#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import shutil from pathlib import Path from typing import Generator from smolagents.agent_types import AgentAudio, AgentImage, AgentText from smolagents.agents import MultiStepAgent, PlanningStep from smolagents.memory import ActionStep, FinalAnswerStep from smolagents.models import ChatMessageStreamDelta, MessageRole, agglomerate_stream_deltas from smolagents.utils import _is_package_available def get_step_footnote_content(step_log: ActionStep | PlanningStep, step_name: str) -> str: """Get a footnote string for a step log with duration and token information""" step_footnote = f"**{step_name}**" if step_log.token_usage is not None: step_footnote += f" | Input tokens: {step_log.token_usage.input_tokens:,} | Output tokens: {step_log.token_usage.output_tokens:,}" step_footnote += f" | Duration: {round(float(step_log.timing.duration), 2)}s" if step_log.timing.duration else "" step_footnote_content = f"""{step_footnote} """ return step_footnote_content def _clean_model_output(model_output: str) -> str: """ Clean up model output by removing trailing tags and extra backticks. Args: model_output (`str`): Raw model output. Returns: `str`: Cleaned model output. """ if not model_output: return "" model_output = model_output.strip() # Remove any trailing and extra backticks, handling multiple possible formats model_output = re.sub(r"```\s*", "```", model_output) # handles ``` model_output = re.sub(r"\s*```", "```", model_output) # handles ``` model_output = re.sub(r"```\s*\n\s*", "```", model_output) # handles ```\n return model_output.strip() def _format_code_content(content: str) -> str: """ Format code content as Python code block if it's not already formatted. Args: content (`str`): Code content to format. Returns: `str`: Code content formatted as a Python code block. """ content = content.strip() # Remove existing code blocks and end_code tags content = re.sub(r"```.*?\n", "", content) content = re.sub(r"\s*\s*", "", content) content = content.strip() # Add Python code block formatting if not already present if not content.startswith("```python"): content = f"```python\n{content}\n```" return content def _process_action_step(step_log: ActionStep, skip_model_outputs: bool = False) -> Generator: """ Process an [`ActionStep`] and yield appropriate Gradio ChatMessage objects. Args: step_log ([`ActionStep`]): ActionStep to process. skip_model_outputs (`bool`): Whether to skip model outputs. Yields: `gradio.ChatMessage`: Gradio ChatMessages representing the action step. """ import gradio as gr # Output the step number step_number = f"Step {step_log.step_number}" if not skip_model_outputs: yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=f"**{step_number}**", metadata={"status": "done"}) # First yield the thought/reasoning from the LLM if not skip_model_outputs and getattr(step_log, "model_output", ""): model_output = _clean_model_output(step_log.model_output) yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=model_output, metadata={"status": "done"}) # For tool calls, create a parent message if getattr(step_log, "tool_calls", []): first_tool_call = step_log.tool_calls[0] used_code = first_tool_call.name == "python_interpreter" # Process arguments based on type args = first_tool_call.arguments if isinstance(args, dict): content = str(args.get("answer", str(args))) else: content = str(args).strip() # Format code content if needed if used_code: content = _format_code_content(content) # Create the tool call message parent_message_tool = gr.ChatMessage( role=MessageRole.ASSISTANT, content=content, metadata={ "title": f"🛠️ Used tool {first_tool_call.name}", "status": "done", }, ) yield parent_message_tool # Display execution logs if they exist if getattr(step_log, "observations", "") and step_log.observations.strip(): log_content = step_log.observations.strip() if log_content: log_content = re.sub(r"^Execution logs:\s*", "", log_content) yield gr.ChatMessage( role=MessageRole.ASSISTANT, content=f"```bash\n{log_content}\n", metadata={"title": "📝 Execution Logs", "status": "done"}, ) # Display any images in observations if getattr(step_log, "observations_images", []): for image in step_log.observations_images: path_image = AgentImage(image).to_string() yield gr.ChatMessage( role=MessageRole.ASSISTANT, content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"}, metadata={"title": "🖼️ Output Image", "status": "done"}, ) # Handle errors if getattr(step_log, "error", None): yield gr.ChatMessage( role=MessageRole.ASSISTANT, content=str(step_log.error), metadata={"title": "💥 Error", "status": "done"} ) # Add step footnote and separator yield gr.ChatMessage( role=MessageRole.ASSISTANT, content=get_step_footnote_content(step_log, step_number), metadata={"status": "done"}, ) yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"}) def _process_planning_step(step_log: PlanningStep, skip_model_outputs: bool = False) -> Generator: """ Process a [`PlanningStep`] and yield appropriate gradio.ChatMessage objects. Args: step_log ([`PlanningStep`]): PlanningStep to process. Yields: `gradio.ChatMessage`: Gradio ChatMessages representing the planning step. """ import gradio as gr if not skip_model_outputs: yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="**Planning step**", metadata={"status": "done"}) yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=step_log.plan, metadata={"status": "done"}) yield gr.ChatMessage( role=MessageRole.ASSISTANT, content=get_step_footnote_content(step_log, "Planning step"), metadata={"status": "done"}, ) yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"}) def _process_final_answer_step(step_log: FinalAnswerStep) -> Generator: """ Process a [`FinalAnswerStep`] and yield appropriate gradio.ChatMessage objects. Args: step_log ([`FinalAnswerStep`]): FinalAnswerStep to process. Yields: `gradio.ChatMessage`: Gradio ChatMessages representing the final answer. """ import gradio as gr final_answer = step_log.output if isinstance(final_answer, AgentText): yield gr.ChatMessage( role=MessageRole.ASSISTANT, content=f"**Final answer:**\n{final_answer.to_string()}\n", metadata={"status": "done"}, ) elif isinstance(final_answer, AgentImage): yield gr.ChatMessage( role=MessageRole.ASSISTANT, content={"path": final_answer.to_string(), "mime_type": "image/png"}, metadata={"status": "done"}, ) elif isinstance(final_answer, AgentAudio): yield gr.ChatMessage( role=MessageRole.ASSISTANT, content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, metadata={"status": "done"}, ) else: yield gr.ChatMessage( role=MessageRole.ASSISTANT, content=f"**Final answer:** {str(final_answer)}", metadata={"status": "done"} ) def pull_messages_from_step(step_log: ActionStep | PlanningStep | FinalAnswerStep, skip_model_outputs: bool = False): """Extract Gradio ChatMessage objects from agent steps with proper nesting. Args: step_log: The step log to display as gr.ChatMessage objects. skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects: This is used for instance when streaming model outputs have already been displayed. """ if not _is_package_available("gradio"): raise ModuleNotFoundError( "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" ) if isinstance(step_log, ActionStep): yield from _process_action_step(step_log, skip_model_outputs) elif isinstance(step_log, PlanningStep): yield from _process_planning_step(step_log, skip_model_outputs) elif isinstance(step_log, FinalAnswerStep): yield from _process_final_answer_step(step_log) else: raise ValueError(f"Unsupported step type: {type(step_log)}") def stream_to_gradio( agent, task: str, task_images: list | None = None, reset_agent_memory: bool = False, additional_args: dict | None = None, ) -> Generator: """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" if not _is_package_available("gradio"): raise ModuleNotFoundError( "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" ) accumulated_events: list[ChatMessageStreamDelta] = [] for event in agent.run( task, images=task_images, stream=True, reset=reset_agent_memory, additional_args=additional_args ): if isinstance(event, ActionStep | PlanningStep | FinalAnswerStep): for message in pull_messages_from_step( event, # If we're streaming model outputs, no need to display them twice skip_model_outputs=getattr(agent, "stream_outputs", False), ): yield message accumulated_events = [] elif isinstance(event, ChatMessageStreamDelta): accumulated_events.append(event) text = agglomerate_stream_deltas(accumulated_events).render_as_markdown() yield text class GradioUI: """ Gradio interface for interacting with a [`MultiStepAgent`]. This class provides a web interface to interact with the agent in real-time, allowing users to submit prompts, upload files, and receive responses in a chat-like format. It can reset the agent's memory at the start of each interaction if desired. It supports file uploads, which are saved to a specified folder. It uses the [`gradio.Chatbot`] component to display the conversation history. This class requires the `gradio` extra to be installed: `smolagents[gradio]`. Args: agent ([`MultiStepAgent`]): The agent to interact with. file_upload_folder (`str`, *optional*): The folder where uploaded files will be saved. If not provided, file uploads are disabled. reset_agent_memory (`bool`, *optional*, defaults to `False`): Whether to reset the agent's memory at the start of each interaction. If `True`, the agent will not remember previous interactions. Raises: ModuleNotFoundError: If the `gradio` extra is not installed. Example: ```python from smolagents import CodeAgent, GradioUI, InferenceClientModel model = InferenceClientModel(model_id="meta-llama/Meta-Llama-3.1-8B-Instruct") agent = CodeAgent(tools=[], model=model) gradio_ui = GradioUI(agent, file_upload_folder="uploads", reset_agent_memory=True) gradio_ui.launch() ``` """ def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None, reset_agent_memory: bool = False): if not _is_package_available("gradio"): raise ModuleNotFoundError( "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" ) self.agent = agent self.file_upload_folder = Path(file_upload_folder) if file_upload_folder is not None else None self.reset_agent_memory = reset_agent_memory self.name = getattr(agent, "name") or "Agent interface" self.description = getattr(agent, "description", None) if self.file_upload_folder is not None: if not self.file_upload_folder.exists(): self.file_upload_folder.mkdir(parents=True, exist_ok=True) def interact_with_agent(self, prompt, messages, session_state): import gradio as gr # Get the agent type from the template agent if "agent" not in session_state: session_state["agent"] = self.agent try: messages.append(gr.ChatMessage(role="user", content=prompt, metadata={"status": "done"})) yield messages for msg in stream_to_gradio( session_state["agent"], task=prompt, reset_agent_memory=self.reset_agent_memory ): if isinstance(msg, gr.ChatMessage): messages[-1].metadata["status"] = "done" messages.append(msg) elif isinstance(msg, str): # Then it's only a completion delta msg = msg.replace("<", r"\<").replace(">", r"\>") # HTML tags seem to break Gradio Chatbot if messages[-1].metadata["status"] == "pending": messages[-1].content = msg else: messages.append( gr.ChatMessage(role=MessageRole.ASSISTANT, content=msg, metadata={"status": "pending"}) ) yield messages yield messages except Exception as e: yield messages raise gr.Error(f"Error in interaction: {str(e)}") def upload_file(self, file, file_uploads_log, allowed_file_types=None): """ Upload a file and add it to the list of uploaded files in the session state. The file is saved to the `self.file_upload_folder` folder. If the file type is not allowed, it returns a message indicating the disallowed file type. Args: file (`gradio.File`): The uploaded file. file_uploads_log (`list`): A list to log uploaded files. allowed_file_types (`list`, *optional*): List of allowed file extensions. Defaults to [".pdf", ".docx", ".txt"]. """ import gradio as gr if file is None: return gr.Textbox(value="No file uploaded", visible=True), file_uploads_log if allowed_file_types is None: allowed_file_types = [".pdf", ".docx", ".txt"] file_ext = os.path.splitext(file.name)[1].lower() if file_ext not in allowed_file_types: return gr.Textbox("File type disallowed", visible=True), file_uploads_log # Sanitize file name original_name = os.path.basename(file.name) sanitized_name = re.sub( r"[^\w\-.]", "_", original_name ) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores # Save the uploaded file to the specified folder file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name)) shutil.copy(file.name, file_path) return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] def log_user_message(self, text_input, file_uploads_log): import gradio as gr return ( text_input + ( f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" if len(file_uploads_log) > 0 else "" ), "", gr.Button(interactive=False), ) def launch(self, share: bool = True, **kwargs): """ Launch the Gradio app with the agent interface. Args: share (`bool`, defaults to `True`): Whether to share the app publicly. **kwargs: Additional keyword arguments to pass to the Gradio launch method. """ self.create_app().launch(debug=True, share=share, **kwargs) def create_app(self): import gradio as gr with gr.Blocks(theme="ocean", fill_height=True) as demo: # Add session state to store session-specific data session_state = gr.State({}) stored_messages = gr.State([]) file_uploads_log = gr.State([]) with gr.Sidebar(): gr.Markdown( f"# {self.name.replace('_', ' ').capitalize()}" "\n> This web ui allows you to interact with a `smolagents` agent that can use tools and execute steps to complete tasks." + (f"\n\n**Agent description:**\n{self.description}" if self.description else "") ) with gr.Group(): gr.Markdown("**Your request**", container=True) text_input = gr.Textbox( lines=3, label="Chat Message", container=False, placeholder="Enter your prompt here and press Shift+Enter or press the button", ) submit_btn = gr.Button("Submit", variant="primary") # If an upload folder is provided, enable the upload feature if self.file_upload_folder is not None: upload_file = gr.File(label="Upload a file") upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) upload_file.change( self.upload_file, [upload_file, file_uploads_log], [upload_status, file_uploads_log], ) gr.HTML( "

Powered by smolagents

" ) # Main chat interface chatbot = gr.Chatbot( label="Agent", type="messages", avatar_images=( None, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", ), resizeable=True, scale=1, latex_delimiters=[ {"left": r"$$", "right": r"$$", "display": True}, {"left": r"$", "right": r"$", "display": False}, {"left": r"\[", "right": r"\]", "display": True}, {"left": r"\(", "right": r"\)", "display": False}, ], ) # Set up event handlers text_input.submit( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input, submit_btn], ).then(self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot]).then( lambda: ( gr.Textbox( interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button" ), gr.Button(interactive=True), ), None, [text_input, submit_btn], ) submit_btn.click( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input, submit_btn], ).then(self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot]).then( lambda: ( gr.Textbox( interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button" ), gr.Button(interactive=True), ), None, [text_input, submit_btn], ) return demo __all__ = ["stream_to_gradio", "GradioUI"]