# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import sys import unittest from contextlib import ExitStack from unittest.mock import MagicMock, patch import pytest from huggingface_hub import ChatCompletionOutputMessage from smolagents.default_tools import FinalAnswerTool from smolagents.models import ( AmazonBedrockServerModel, AzureOpenAIServerModel, ChatMessage, ChatMessageToolCall, InferenceClientModel, LiteLLMModel, LiteLLMRouterModel, MessageRole, MLXModel, Model, OpenAIServerModel, TransformersModel, get_clean_message_list, get_tool_call_from_text, get_tool_json_schema, parse_json_if_needed, supports_stop_parameter, ) from smolagents.tools import tool from .utils.markers import require_run_all class TestModel: def test_agglomerate_stream_deltas(self): from smolagents.models import ( ChatMessageStreamDelta, ChatMessageToolCallFunction, ChatMessageToolCallStreamDelta, TokenUsage, agglomerate_stream_deltas, ) stream_deltas = [ ChatMessageStreamDelta( content="Hi", tool_calls=[ ChatMessageToolCallStreamDelta( index=0, type="function", function=ChatMessageToolCallFunction(arguments="", name="web_search", description=None), ) ], token_usage=None, ), ChatMessageStreamDelta( content=" everyone", tool_calls=[ ChatMessageToolCallStreamDelta( index=0, type="function", function=ChatMessageToolCallFunction(arguments=' {"', name="web_search", description=None), ) ], token_usage=None, ), ChatMessageStreamDelta( content=", it's", tool_calls=[ ChatMessageToolCallStreamDelta( index=0, type="function", function=ChatMessageToolCallFunction( arguments='query": "current pope name and date of birth"}', name="web_search", description=None, ), ) ], token_usage=None, ), ChatMessageStreamDelta( content="", tool_calls=None, token_usage=TokenUsage(input_tokens=1348, output_tokens=24), ), ] agglomerated_stream_delta = agglomerate_stream_deltas(stream_deltas) assert agglomerated_stream_delta.content == "Hi everyone, it's" assert ( agglomerated_stream_delta.tool_calls[0].function.arguments == ' {"query": "current pope name and date of birth"}' ) assert agglomerated_stream_delta.token_usage.total_tokens == 1372 @pytest.mark.parametrize( "model_id, stop_sequences, should_contain_stop", [ ("regular-model", ["stop1", "stop2"], True), # Regular model should include stop ("openai/o3", ["stop1", "stop2"], False), # o3 model should not include stop ("openai/o4-mini", ["stop1", "stop2"], False), # o4-mini model should not include stop ("something/else/o3", ["stop1", "stop2"], False), # Path ending with o3 should not include stop ("something/else/o4-mini", ["stop1", "stop2"], False), # Path ending with o4-mini should not include stop ("o3", ["stop1", "stop2"], False), # Exact o3 model should not include stop ("o4-mini", ["stop1", "stop2"], False), # Exact o4-mini model should not include stop ("regular-model", None, False), # None stop_sequences should not add stop parameter ], ) def test_prepare_completion_kwargs_stop_sequences(self, model_id, stop_sequences, should_contain_stop): model = Model() model.model_id = model_id completion_kwargs = model._prepare_completion_kwargs( messages=[ ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello"}]), ], stop_sequences=stop_sequences, ) # Verify that the stop parameter is only included when appropriate if should_contain_stop: assert "stop" in completion_kwargs assert completion_kwargs["stop"] == stop_sequences else: assert "stop" not in completion_kwargs @pytest.mark.parametrize( "with_tools, tool_choice, expected_result", [ # Default behavior: With tools but no explicit tool_choice, should default to "required" (True, ..., {"has_tool_choice": True, "value": "required"}), # Custom value: With tools and explicit tool_choice="auto" (True, "auto", {"has_tool_choice": True, "value": "auto"}), # Tool name as string (True, "valid_tool_function", {"has_tool_choice": True, "value": "valid_tool_function"}), # Tool choice as dictionary ( True, {"type": "function", "function": {"name": "valid_tool_function"}}, {"has_tool_choice": True, "value": {"type": "function", "function": {"name": "valid_tool_function"}}}, ), # With tools but explicit None tool_choice: should exclude tool_choice (True, None, {"has_tool_choice": False, "value": None}), # Without tools: tool_choice should never be included (False, "required", {"has_tool_choice": False, "value": None}), (False, "auto", {"has_tool_choice": False, "value": None}), (False, None, {"has_tool_choice": False, "value": None}), (False, ..., {"has_tool_choice": False, "value": None}), ], ) def test_prepare_completion_kwargs_tool_choice(self, with_tools, tool_choice, expected_result, example_tool): model = Model() kwargs = {"messages": [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello"}])]} if with_tools: kwargs["tools_to_call_from"] = [example_tool] if tool_choice is not ...: kwargs["tool_choice"] = tool_choice completion_kwargs = model._prepare_completion_kwargs(**kwargs) if expected_result["has_tool_choice"]: assert "tool_choice" in completion_kwargs assert completion_kwargs["tool_choice"] == expected_result["value"] else: assert "tool_choice" not in completion_kwargs def test_get_json_schema_has_nullable_args(self): @tool def get_weather(location: str, celsius: bool | None = False) -> str: """ Get weather in the next days at given location. Secretly this tool does not care about the location, it hates the weather everywhere. Args: location: the location celsius: the temperature type """ return "The weather is UNGODLY with torrential rains and temperatures below -10°C" assert "nullable" in get_tool_json_schema(get_weather)["function"]["parameters"]["properties"]["celsius"] def test_chatmessage_has_model_dumps_json(self): message = ChatMessage("user", [{"type": "text", "text": "Hello!"}]) data = json.loads(message.model_dump_json()) assert data["content"] == [{"type": "text", "text": "Hello!"}] @unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS") def test_get_mlx_message_no_tool(self): model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=10) messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])] output = model(messages, stop_sequences=["great"]).content assert output.startswith("Hello") @unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS") def test_get_mlx_message_tricky_stop_sequence(self): # In this test HuggingFaceTB/SmolLM2-135M-Instruct generates the token ">'" # which is required to test capturing stop_sequences that have extra chars at the end. model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=100) stop_sequence = " print '>" messages = [ ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": f"Please{stop_sequence}'"}]), ] # check our assumption that that ">" is followed by "'" assert model.tokenizer.vocab[">'"] assert model(messages, stop_sequences=[]).content == f"I'm ready to help you{stop_sequence}'" # check stop_sequence capture when output has trailing chars assert model(messages, stop_sequences=[stop_sequence]).content == "I'm ready to help you" def test_transformers_message_no_tool(self, monkeypatch): monkeypatch.setattr("huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT", 30) # instead of 10 model = TransformersModel( model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_new_tokens=5, device_map="cpu", do_sample=False, ) messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])] output = model.generate(messages).content assert output == "Hello! I'm here" output = model.generate_stream(messages, stop_sequences=["great"]) output_str = "" for el in output: output_str += el.content assert output_str == "Hello! I'm here" def test_transformers_message_vl_no_tool(self, shared_datadir, monkeypatch): monkeypatch.setattr("huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT", 30) # instead of 10 import PIL.Image img = PIL.Image.open(shared_datadir / "000000039769.png") model = TransformersModel( model_id="llava-hf/llava-interleave-qwen-0.5b-hf", max_new_tokens=4, device_map="cpu", do_sample=False, ) messages = [ ChatMessage( role=MessageRole.USER, content=[{"type": "text", "text": "What is this?"}, {"type": "image", "image": img}], ) ] output = model.generate(messages).content assert output == "This is a very" output = model.generate_stream(messages, stop_sequences=["great"]) output_str = "" for el in output: output_str += el.content assert output_str == "This is a very" def test_parse_json_if_needed(self): args = "abc" parsed_args = parse_json_if_needed(args) assert parsed_args == "abc" args = '{"a": 3}' parsed_args = parse_json_if_needed(args) assert parsed_args == {"a": 3} args = "3" parsed_args = parse_json_if_needed(args) assert parsed_args == 3 args = 3 parsed_args = parse_json_if_needed(args) assert parsed_args == 3 class TestInferenceClientModel: def test_call_with_custom_role_conversions(self): custom_role_conversions = {MessageRole.USER: MessageRole.SYSTEM} model = InferenceClientModel(model_id="test-model", custom_role_conversions=custom_role_conversions) model.client = MagicMock() mock_response = model.client.chat_completion.return_value mock_response.choices[0].message = ChatCompletionOutputMessage(role=MessageRole.ASSISTANT) messages = [ChatMessage(role=MessageRole.USER, content="Test message")] _ = model(messages) # Verify that the role conversion was applied assert model.client.chat_completion.call_args.kwargs["messages"][0]["role"] == "system", ( "role conversion should be applied" ) def test_init_model_with_tokens(self): model = InferenceClientModel(model_id="test-model", token="abc") assert model.client.token == "abc" model = InferenceClientModel(model_id="test-model", api_key="abc") assert model.client.token == "abc" with pytest.raises(ValueError, match="Received both `token` and `api_key` arguments."): InferenceClientModel(model_id="test-model", token="abc", api_key="def") def test_structured_outputs_with_unsupported_provider(self): with pytest.raises( ValueError, match="InferenceClientModel only supports structured outputs with these providers:" ): model = InferenceClientModel(model_id="test-model", token="abc", provider="some_provider") model.generate( messages=[ChatMessage(role=MessageRole.USER, content="Hello!")], response_format={"type": "json_object"}, ) @require_run_all def test_get_hfapi_message_no_tool(self): model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", max_tokens=10) messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])] model(messages, stop_sequences=["great"]) @require_run_all def test_get_hfapi_message_no_tool_external_provider(self): model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", max_tokens=10) messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])] model(messages, stop_sequences=["great"]) @require_run_all def test_get_hfapi_message_stream_no_tool(self): model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", max_tokens=10) messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])] for el in model.generate_stream(messages, stop_sequences=["great"]): assert el.content is not None @require_run_all def test_get_hfapi_message_stream_no_tool_external_provider(self): model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", max_tokens=10) messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])] for el in model.generate_stream(messages, stop_sequences=["great"]): assert el.content is not None class TestLiteLLMModel: @pytest.mark.parametrize( "model_id, error_flag", [ ("groq/llama-3.3-70b", "Invalid API Key"), ("cerebras/llama-3.3-70b", "The api_key client option must be set"), ("mistral/mistral-tiny", "The api_key client option must be set"), ], ) def test_call_different_providers_without_key(self, model_id, error_flag): model = LiteLLMModel(model_id=model_id) messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Test message"}])] with pytest.raises(Exception) as e: # This should raise 401 error because of missing API key, not fail for any "bad format" reason model.generate(messages) assert error_flag in str(e) with pytest.raises(Exception) as e: # This should raise 401 error because of missing API key, not fail for any "bad format" reason for el in model.generate_stream(messages): assert el.content is not None assert error_flag in str(e) def test_passing_flatten_messages(self): model = LiteLLMModel(model_id="groq/llama-3.3-70b", flatten_messages_as_text=False) assert not model.flatten_messages_as_text model = LiteLLMModel(model_id="fal/llama-3.3-70b", flatten_messages_as_text=True) assert model.flatten_messages_as_text class TestLiteLLMRouterModel: @pytest.mark.parametrize( "model_id, expected", [ ("llama-3.3-70b", False), ("llama-3.3-70b", True), ("mistral-tiny", True), ], ) def test_flatten_messages_as_text(self, model_id, expected): model_list = [ {"model_name": "llama-3.3-70b", "litellm_params": {"model": "groq/llama-3.3-70b"}}, {"model_name": "llama-3.3-70b", "litellm_params": {"model": "cerebras/llama-3.3-70b"}}, {"model_name": "mistral-tiny", "litellm_params": {"model": "mistral/mistral-tiny"}}, ] model = LiteLLMRouterModel(model_id=model_id, model_list=model_list, flatten_messages_as_text=expected) assert model.flatten_messages_as_text is expected def test_create_client(self): model_list = [ {"model_name": "llama-3.3-70b", "litellm_params": {"model": "groq/llama-3.3-70b"}}, {"model_name": "llama-3.3-70b", "litellm_params": {"model": "cerebras/llama-3.3-70b"}}, ] with patch("litellm.router.Router") as mock_router: router_model = LiteLLMRouterModel( model_id="model-group-1", model_list=model_list, client_kwargs={"routing_strategy": "simple-shuffle"} ) # Ensure that the Router constructor was called with the expected keyword arguments mock_router.assert_called_once() assert mock_router.call_count == 1 assert mock_router.call_args.kwargs["model_list"] == model_list assert mock_router.call_args.kwargs["routing_strategy"] == "simple-shuffle" assert router_model.client == mock_router.return_value class TestOpenAIServerModel: def test_client_kwargs_passed_correctly(self): model_id = "gpt-3.5-turbo" api_base = "https://api.openai.com/v1" api_key = "test_api_key" organization = "test_org" project = "test_project" client_kwargs = {"max_retries": 5} with patch("openai.OpenAI") as MockOpenAI: model = OpenAIServerModel( model_id=model_id, api_base=api_base, api_key=api_key, organization=organization, project=project, client_kwargs=client_kwargs, ) MockOpenAI.assert_called_once_with( base_url=api_base, api_key=api_key, organization=organization, project=project, max_retries=5 ) assert model.client == MockOpenAI.return_value @require_run_all def test_streaming_tool_calls(self): model = OpenAIServerModel(model_id="gpt-4o-mini") messages = [ ChatMessage( role=MessageRole.USER, content=[ { "type": "text", "text": "Hello! Please return the final answer 'blob' and the final answer 'blob2' in two parallel tool calls", } ], ), ] for el in model.generate_stream(messages, tools_to_call_from=[FinalAnswerTool()]): if el.tool_calls: assert el.tool_calls[0].function.name == "final_answer" args = el.tool_calls[0].function.arguments if len(el.tool_calls) > 1: assert el.tool_calls[1].function.name == "final_answer" args2 = el.tool_calls[1].function.arguments assert args == '{"answer": "blob"}' assert args2 == '{"answer": "blob2"}' class TestAmazonBedrockServerModel: def test_client_for_bedrock(self): model_id = "us.amazon.nova-pro-v1:0" with patch("boto3.client") as MockBoto3: model = AmazonBedrockServerModel( model_id=model_id, ) assert model.client == MockBoto3.return_value class TestAzureOpenAIServerModel: def test_client_kwargs_passed_correctly(self): model_id = "gpt-3.5-turbo" api_key = "test_api_key" api_version = "2023-12-01-preview" azure_endpoint = "https://example-resource.azure.openai.com/" organization = "test_org" project = "test_project" client_kwargs = {"max_retries": 5} with patch("openai.OpenAI") as MockOpenAI, patch("openai.AzureOpenAI") as MockAzureOpenAI: model = AzureOpenAIServerModel( model_id=model_id, api_key=api_key, api_version=api_version, azure_endpoint=azure_endpoint, organization=organization, project=project, client_kwargs=client_kwargs, ) assert MockOpenAI.call_count == 0 MockAzureOpenAI.assert_called_once_with( base_url=None, api_key=api_key, api_version=api_version, azure_endpoint=azure_endpoint, organization=organization, project=project, max_retries=5, ) assert model.client == MockAzureOpenAI.return_value class TestTransformersModel: @pytest.mark.parametrize( "patching", [ [ ( "transformers.AutoModelForImageTextToText.from_pretrained", {"side_effect": ValueError("Unrecognized configuration class")}, ), ("transformers.AutoModelForCausalLM.from_pretrained", {}), ("transformers.AutoTokenizer.from_pretrained", {}), ], [ ("transformers.AutoModelForImageTextToText.from_pretrained", {}), ("transformers.AutoProcessor.from_pretrained", {}), ], ], ) def test_init(self, patching): with ExitStack() as stack: mocks = {target: stack.enter_context(patch(target, **kwargs)) for target, kwargs in patching} model = TransformersModel( model_id="test-model", device_map="cpu", torch_dtype="float16", trust_remote_code=True ) assert model.model_id == "test-model" if "transformers.AutoTokenizer.from_pretrained" in mocks: assert model.model == mocks["transformers.AutoModelForCausalLM.from_pretrained"].return_value assert mocks["transformers.AutoModelForCausalLM.from_pretrained"].call_args.kwargs == { "device_map": "cpu", "torch_dtype": "float16", "trust_remote_code": True, } assert model.tokenizer == mocks["transformers.AutoTokenizer.from_pretrained"].return_value assert mocks["transformers.AutoTokenizer.from_pretrained"].call_args.args == ("test-model",) assert mocks["transformers.AutoTokenizer.from_pretrained"].call_args.kwargs == {"trust_remote_code": True} elif "transformers.AutoProcessor.from_pretrained" in mocks: assert model.model == mocks["transformers.AutoModelForImageTextToText.from_pretrained"].return_value assert mocks["transformers.AutoModelForImageTextToText.from_pretrained"].call_args.kwargs == { "device_map": "cpu", "torch_dtype": "float16", "trust_remote_code": True, } assert model.processor == mocks["transformers.AutoProcessor.from_pretrained"].return_value assert mocks["transformers.AutoProcessor.from_pretrained"].call_args.args == ("test-model",) assert mocks["transformers.AutoProcessor.from_pretrained"].call_args.kwargs == {"trust_remote_code": True} def test_get_clean_message_list_basic(): messages = [ ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}]), ChatMessage(role=MessageRole.ASSISTANT, content=[{"type": "text", "text": "Hi there!"}]), ] result = get_clean_message_list(messages) assert len(result) == 2 assert result[0]["role"] == "user" assert result[0]["content"][0]["text"] == "Hello!" assert result[1]["role"] == "assistant" assert result[1]["content"][0]["text"] == "Hi there!" def test_get_clean_message_list_role_conversions(): messages = [ ChatMessage(role=MessageRole.TOOL_CALL, content=[{"type": "text", "text": "Calling tool..."}]), ChatMessage(role=MessageRole.TOOL_RESPONSE, content=[{"type": "text", "text": "Tool response"}]), ] result = get_clean_message_list(messages, role_conversions={"tool-call": "assistant", "tool-response": "user"}) assert len(result) == 2 assert result[0]["role"] == "assistant" assert result[0]["content"][0]["text"] == "Calling tool..." assert result[1]["role"] == "user" assert result[1]["content"][0]["text"] == "Tool response" @pytest.mark.parametrize( "convert_images_to_image_urls, expected_clean_message", [ ( False, dict( role=MessageRole.USER, content=[ {"type": "image", "image": "encoded_image"}, {"type": "image", "image": "second_encoded_image"}, ], ), ), ( True, dict( role=MessageRole.USER, content=[ {"type": "image_url", "image_url": {"url": "_image"}}, {"type": "image_url", "image_url": {"url": "_encoded_image"}}, ], ), ), ], ) def test_get_clean_message_list_image_encoding(convert_images_to_image_urls, expected_clean_message): message = ChatMessage( role=MessageRole.USER, content=[{"type": "image", "image": b"image_data"}, {"type": "image", "image": b"second_image_data"}], ) with patch("smolagents.models.encode_image_base64") as mock_encode: mock_encode.side_effect = ["encoded_image", "second_encoded_image"] result = get_clean_message_list([message], convert_images_to_image_urls=convert_images_to_image_urls) mock_encode.assert_any_call(b"image_data") mock_encode.assert_any_call(b"second_image_data") assert len(result) == 1 assert result[0] == expected_clean_message def test_get_clean_message_list_flatten_messages_as_text(): messages = [ ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}]), ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "How are you?"}]), ] result = get_clean_message_list(messages, flatten_messages_as_text=True) assert len(result) == 1 assert result[0]["role"] == "user" assert result[0]["content"] == "Hello!\nHow are you?" @pytest.mark.parametrize( "model_class, model_kwargs, patching, expected_flatten_messages_as_text", [ (AzureOpenAIServerModel, {}, ("openai.AzureOpenAI", {}), False), (InferenceClientModel, {}, ("huggingface_hub.InferenceClient", {}), False), (LiteLLMModel, {}, None, False), (LiteLLMModel, {"model_id": "ollama"}, None, True), (LiteLLMModel, {"model_id": "groq"}, None, True), (LiteLLMModel, {"model_id": "cerebras"}, None, True), (MLXModel, {}, ("mlx_lm.load", {"return_value": (MagicMock(), MagicMock())}), True), (OpenAIServerModel, {}, ("openai.OpenAI", {}), False), (OpenAIServerModel, {"flatten_messages_as_text": True}, ("openai.OpenAI", {}), True), ( TransformersModel, {}, [ ( "transformers.AutoModelForImageTextToText.from_pretrained", {"side_effect": ValueError("Unrecognized configuration class")}, ), ("transformers.AutoModelForCausalLM.from_pretrained", {}), ("transformers.AutoTokenizer.from_pretrained", {}), ], True, ), ( TransformersModel, {}, [ ("transformers.AutoModelForImageTextToText.from_pretrained", {}), ("transformers.AutoProcessor.from_pretrained", {}), ], False, ), ], ) def test_flatten_messages_as_text_for_all_models( model_class, model_kwargs, patching, expected_flatten_messages_as_text ): with ExitStack() as stack: if isinstance(patching, list): for target, kwargs in patching: stack.enter_context(patch(target, **kwargs)) elif patching: target, kwargs = patching stack.enter_context(patch(target, **kwargs)) model = model_class(**{"model_id": "test-model", **model_kwargs}) assert model.flatten_messages_as_text is expected_flatten_messages_as_text, f"{model_class.__name__} failed" @pytest.mark.parametrize( "model_id,expected", [ # Unsupported base models ("o3", False), ("o4-mini", False), # Unsupported versioned models ("o3-2025-04-16", False), ("o4-mini-2025-04-16", False), # Unsupported models with path prefixes ("openai/o3", False), ("openai/o4-mini", False), ("openai/o3-2025-04-16", False), ("openai/o4-mini-2025-04-16", False), # Supported models ("o3-mini", True), # Different from o3 ("o3-mini-2025-01-31", True), # Different from o3 ("o4", True), # Different from o4-mini ("o4-turbo", True), # Different from o4-mini ("gpt-4", True), ("claude-3-5-sonnet", True), ("mistral-large", True), # Supported models with path prefixes ("openai/gpt-4", True), ("anthropic/claude-3-5-sonnet", True), ("mistralai/mistral-large", True), # Edge cases ("", True), # Empty string doesn't match pattern ("o3x", True), # Not exactly o3 ("o3_mini", True), # Not o3-mini format ("prefix-o3", True), # o3 not at start ], ) def test_supports_stop_parameter(model_id, expected): """Test the supports_stop_parameter function with various model IDs""" assert supports_stop_parameter(model_id) == expected, f"Failed for model_id: {model_id}" class TestGetToolCallFromText: @pytest.fixture(autouse=True) def mock_uuid4(self): with patch("uuid.uuid4", return_value="test-uuid"): yield def test_get_tool_call_from_text_basic(self): text = '{"name": "weather_tool", "arguments": "New York"}' result = get_tool_call_from_text(text, "name", "arguments") assert isinstance(result, ChatMessageToolCall) assert result.id == "test-uuid" assert result.type == "function" assert result.function.name == "weather_tool" assert result.function.arguments == "New York" def test_get_tool_call_from_text_name_key_missing(self): text = '{"action": "weather_tool", "arguments": "New York"}' with pytest.raises(ValueError) as exc_info: get_tool_call_from_text(text, "name", "arguments") error_msg = str(exc_info.value) assert "Key tool_name_key='name' not found" in error_msg assert "'action', 'arguments'" in error_msg def test_get_tool_call_from_text_json_object_args(self): text = '{"name": "weather_tool", "arguments": {"city": "New York"}}' result = get_tool_call_from_text(text, "name", "arguments") assert result.function.arguments == {"city": "New York"} def test_get_tool_call_from_text_json_string_args(self): text = '{"name": "weather_tool", "arguments": "{\\"city\\": \\"New York\\"}"}' result = get_tool_call_from_text(text, "name", "arguments") assert result.function.arguments == {"city": "New York"} def test_get_tool_call_from_text_missing_args(self): text = '{"name": "weather_tool"}' result = get_tool_call_from_text(text, "name", "arguments") assert result.function.arguments is None def test_get_tool_call_from_text_custom_keys(self): text = '{"tool": "weather_tool", "params": "New York"}' result = get_tool_call_from_text(text, "tool", "params") assert result.function.name == "weather_tool" assert result.function.arguments == "New York" def test_get_tool_call_from_text_numeric_args(self): text = '{"name": "calculator", "arguments": 42}' result = get_tool_call_from_text(text, "name", "arguments") assert result.function.name == "calculator" assert result.function.arguments == 42