Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,566 Bytes
ce2b58f 487b7f6 bbc95d9 1044803 487b7f6 b0c7a24 cdbafa3 487b7f6 1044803 487b7f6 ce2b58f b0c7a24 bbc95d9 ce2b58f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
class ObjectDetector:
def __init__(self, model_key="yolov8n", device="cpu"):
self.device = device
self.model = None
self.model_key = model_key.lower().replace(".pt", "")
hf_map = {
"yolov8n": ("ultralytics/yolov8", "yolov8n.pt"),
"yolov8s": ("ultralytics/yolov8", "yolov8s.pt"),
"yolov8l": ("ultralytics/yolov8", "yolov8l.pt"),
"yolov11b": ("Ultralytics/YOLO11", "yolov11b.pt"),
}
if self.model_key not in hf_map:
raise ValueError(f"Unsupported model key: {self.model_key}")
repo_id, filename = hf_map[self.model_key]
self.weights_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
cache_dir="models/detection/weights",
force_download=False
)
def load_model(self):
if self.model is None:
from ultralytics import YOLO # Defer import
self.model = YOLO(self.weights_path)
if self.device == "cuda":
self.model.to("cuda")
return self # So you can chain
def predict(self, image: Image.Image, conf_threshold=0.25):
self.load_model()
results = self.model(image)
detections = []
for r in results:
for box in r.boxes:
detections.append({
"class_name": r.names[int(box.cls)],
"confidence": float(box.conf),
"bbox": box.xyxy[0].tolist()
})
return detections
|