Spaces:
Runtime error
Runtime error
| import logging | |
| import torch | |
| from PIL import Image | |
| import numpy as np | |
| from torchvision import transforms | |
| from torchvision.models.segmentation import deeplabv3_resnet50 | |
| from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor | |
| logger = logging.getLogger(__name__) | |
| class Segmenter: | |
| """ | |
| Generalized Semantic Segmentation Wrapper for SegFormer and DeepLabV3. | |
| """ | |
| def __init__(self, model_key="nvidia/segformer-b0-finetuned-ade-512-512", device="cpu"): | |
| """ | |
| Initialize the segmentation model. | |
| Args: | |
| model_key (str): Model identifier, e.g., Hugging Face model id or 'deeplabv3_resnet50'. | |
| device (str): Inference device ("cpu" or "cuda"). | |
| """ | |
| logger.info(f"Initializing segmenter with model: {model_key}") | |
| self.device = device | |
| self.model_key = model_key | |
| self.model, self.processor = self._load_model() | |
| def _load_model(self): | |
| """ | |
| Load the segmentation model and processor. | |
| Returns: | |
| Tuple[torch.nn.Module, Optional[Processor]] | |
| """ | |
| if "segformer" in self.model_key: | |
| model = SegformerForSemanticSegmentation.from_pretrained(self.model_key).to(self.device) | |
| processor = SegformerFeatureExtractor.from_pretrained(self.model_key) | |
| return model, processor | |
| elif self.model_key == "deeplabv3_resnet50": | |
| model = deeplabv3_resnet50(pretrained=True).to(self.device).eval() | |
| return model, None | |
| else: | |
| raise ValueError(f"Unsupported model key: {self.model_key}") | |
| def predict(self, image: Image.Image): | |
| """ | |
| Perform segmentation on the input image. | |
| Args: | |
| image (PIL.Image.Image): Input image. | |
| Returns: | |
| np.ndarray: Segmentation mask. | |
| """ | |
| logger.info("Running segmentation") | |
| if "segformer" in self.model_key: | |
| inputs = self.processor(images=image, return_tensors="pt").to(self.device) | |
| outputs = self.model(**inputs) | |
| mask = outputs.logits.argmax(dim=1).squeeze().cpu().numpy() | |
| return mask | |
| elif self.model_key == "deeplabv3_resnet50": | |
| transform = transforms.Compose([ | |
| transforms.ToTensor(), | |
| ]) | |
| inputs = transform(image).unsqueeze(0).to(self.device) | |
| with torch.no_grad(): | |
| outputs = self.model(inputs)["out"] | |
| mask = outputs.argmax(1).squeeze().cpu().numpy() | |
| return mask | |
| def draw(self, image: Image.Image, mask: np.ndarray, alpha=0.5): | |
| """ | |
| Overlay the segmentation mask on the input image. | |
| Args: | |
| image (PIL.Image.Image): Original image. | |
| mask (np.ndarray): Segmentation mask. | |
| alpha (float): Blend strength. | |
| Returns: | |
| PIL.Image.Image: Image with mask overlay. | |
| """ | |
| logger.info("Drawing segmentation overlay") | |
| mask_img = Image.fromarray((mask * 255 / mask.max()).astype(np.uint8)).convert("L").resize(image.size) | |
| mask_colored = Image.merge("RGB", (mask_img, mask_img, mask_img)) | |
| return Image.blend(image, mask_colored, alpha) | |