Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
from PIL import Image, ImageDraw | |
from huggingface_hub import hf_hub_download | |
from ultralytics import YOLO | |
import shutil | |
logger = logging.getLogger(__name__) | |
shutil.rmtree("models/detection/weights", ignore_errors=True) | |
class ObjectDetector: | |
def __init__(self, model_key="yolov8n", device="cpu"): | |
""" | |
Initialize the Object Detection model using Ultralytics YOLO registry. | |
Args: | |
model_key (str): Model name supported by ultralytics, e.g. 'yolov5n', 'yolov8s', etc. | |
device (str): 'cpu' or 'cuda' | |
""" | |
alias_map = { | |
"yolov8s": "yolov8s", | |
"yolov8l": "yolov8l", | |
"yolov11b": "yolov11b", | |
} | |
raw_key = model_key.lower() | |
resolved_key = alias_map.get(raw_key, raw_key) | |
self.device = device | |
self.model = YOLO(resolved_key) | |
logger.info(f" Ultralytics YOLO model '{resolved_key}' initialized on {device}") | |
def predict(self, image: Image.Image, conf_threshold=0.25): | |
""" | |
Run object detection. | |
Args: | |
image (PIL.Image.Image): Input image. | |
Returns: | |
List[Dict]: List of detected objects with class name, confidence, and bbox. | |
""" | |
logger.info("Running object detection") | |
results = self.model(image) | |
detections = [] | |
for r in results: | |
for box in r.boxes: | |
detections.append({ | |
"class_name": r.names[int(box.cls)], | |
"confidence": float(box.conf), | |
"bbox": box.xyxy[0].tolist() | |
}) | |
logger.info(f"Detected {len(detections)} objects") | |
return detections | |
def draw(self, image: Image.Image, detections, alpha=0.5): | |
""" | |
Draw bounding boxes on image. | |
Args: | |
image (PIL.Image.Image): Input image. | |
detections (List[Dict]): Detection results. | |
alpha (float): Blend strength. | |
Returns: | |
PIL.Image.Image: Image with bounding boxes drawn. | |
""" | |
overlay = image.copy() | |
draw = ImageDraw.Draw(overlay) | |
for det in detections: | |
bbox = det["bbox"] | |
label = f'{det["class_name"]} {det["confidence"]:.2f}' | |
draw.rectangle(bbox, outline="red", width=2) | |
draw.text((bbox[0], bbox[1]), label, fill="red") | |
return Image.blend(image, overlay, alpha) | |