import logging from PIL import Image, ImageDraw from huggingface_hub import hf_hub_download from ultralytics import YOLO import os import shutil # Setup logger logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") # Optional: clear weights cache each time (only for dev use) shutil.rmtree("models/detection/weights", ignore_errors=True) class ObjectDetector: def __init__(self, model_key="yolov8n", device="cpu"): """ Initializes an Ultralytics YOLO model using HF download path. Args: model_key (str): e.g. 'yolov8n', 'yolov8s', etc. device (str): 'cpu' or 'cuda' """ # Optional aliasing alias_map = { "yolov8n": "yolov8n", "yolov8s": "yolov8s", "yolov8l": "yolov8l", "yolov11b": "yolov11b" } resolved_key = model_key.lower().replace(".pt", "") # HF repo map hf_map = { "yolov8n": ("ultralytics/yolov8", "yolov8n.pt"), "yolov8s": ("ultralytics/yolov8", "yolov8s.pt"), "yolov8l": ("ultralytics/yolov8", "yolov8l.pt"), "yolov11b": ("Ultralytics/YOLO11", "yolov11b.pt"), } if resolved_key not in hf_map: raise ValueError(f"Unsupported model key: {resolved_key}") repo_id, filename = hf_map[resolved_key] # 📥 Download from HF Hub weights_path = hf_hub_download( repo_id=repo_id, filename=filename, cache_dir="models/detection/weights", force_download=True # Optional: change to False for reuse ) logger.info(f"✅ Loaded YOLO model: {resolved_key} from {weights_path}") self.device = device self.model = YOLO(weights_path) def predict(self, image: Image.Image, conf_threshold=0.25): logger.info("Running object detection") results = self.model(image) detections = [] for r in results: for box in r.boxes: detections.append({ "class_name": r.names[int(box.cls)], "confidence": float(box.conf), "bbox": box.xyxy[0].tolist() }) logger.info(f"Detected {len(detections)} objects") return detections def draw(self, image: Image.Image, detections, alpha=0.5): overlay = image.copy() draw = ImageDraw.Draw(overlay) for det in detections: bbox = det["bbox"] label = f'{det["class_name"]} {det["confidence"]:.2f}' draw.rectangle(bbox, outline="red", width=2) draw.text((bbox[0], bbox[1]), label, fill="red") return Image.blend(image, overlay, alpha)