Spaces:
Sleeping
Sleeping
Update ingestion.py
Browse files- ingestion.py +26 -11
ingestion.py
CHANGED
@@ -1,20 +1,29 @@
|
|
1 |
import os
|
2 |
import glob
|
|
|
|
|
3 |
from datasets import Dataset
|
4 |
from unstructured.partition.pdf import partition_pdf
|
5 |
from transformers import RagTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
def ingest_and_push(dataset_name="username/mealplan-chunks"):
|
8 |
-
# Initialize tokenizer for token-aware splitting
|
9 |
-
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
10 |
texts, sources, pages = [], [], []
|
11 |
|
|
|
12 |
for pdf_path in glob.glob("pdfs/*.pdf"):
|
13 |
book = os.path.basename(pdf_path)
|
14 |
pages_data = partition_pdf(filename=pdf_path)
|
15 |
-
for
|
16 |
-
|
17 |
-
enc = tokenizer(
|
18 |
page.text,
|
19 |
max_length=800,
|
20 |
truncation=True,
|
@@ -22,14 +31,13 @@ def ingest_and_push(dataset_name="username/mealplan-chunks"):
|
|
22 |
stride=50,
|
23 |
return_tensors="pt"
|
24 |
)
|
25 |
-
# Decode each token window back to text chunk
|
26 |
for token_ids in enc["input_ids"]:
|
27 |
-
chunk =
|
28 |
texts.append(chunk)
|
29 |
sources.append(book)
|
30 |
-
pages.append(
|
31 |
|
32 |
-
# Build HF Dataset
|
33 |
ds = Dataset.from_dict({
|
34 |
"text": texts,
|
35 |
"source": sources,
|
@@ -37,5 +45,12 @@ def ingest_and_push(dataset_name="username/mealplan-chunks"):
|
|
37 |
})
|
38 |
ds.push_to_hub(dataset_name, token=True)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
if __name__ == "__main__":
|
41 |
-
ingest_and_push()
|
|
|
1 |
import os
|
2 |
import glob
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
from datasets import Dataset
|
6 |
from unstructured.partition.pdf import partition_pdf
|
7 |
from transformers import RagTokenizer
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
|
10 |
+
def ingest_and_push(
|
11 |
+
dataset_name="username/mealplan-chunks",
|
12 |
+
index_path="mealplan.index"
|
13 |
+
):
|
14 |
+
# 1) Tokenizer for chunking
|
15 |
+
rag_tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
16 |
+
# 2) Embedder for FAISS
|
17 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
18 |
|
|
|
|
|
|
|
19 |
texts, sources, pages = [], [], []
|
20 |
|
21 |
+
# 3) Chunk each PDF
|
22 |
for pdf_path in glob.glob("pdfs/*.pdf"):
|
23 |
book = os.path.basename(pdf_path)
|
24 |
pages_data = partition_pdf(filename=pdf_path)
|
25 |
+
for pg_num, page in enumerate(pages_data, start=1):
|
26 |
+
enc = rag_tokenizer(
|
|
|
27 |
page.text,
|
28 |
max_length=800,
|
29 |
truncation=True,
|
|
|
31 |
stride=50,
|
32 |
return_tensors="pt"
|
33 |
)
|
|
|
34 |
for token_ids in enc["input_ids"]:
|
35 |
+
chunk = rag_tokenizer.decode(token_ids, skip_special_tokens=True)
|
36 |
texts.append(chunk)
|
37 |
sources.append(book)
|
38 |
+
pages.append(pg_num)
|
39 |
|
40 |
+
# 4) Build HF Dataset
|
41 |
ds = Dataset.from_dict({
|
42 |
"text": texts,
|
43 |
"source": sources,
|
|
|
45 |
})
|
46 |
ds.push_to_hub(dataset_name, token=True)
|
47 |
|
48 |
+
# 5) Build FAISS index
|
49 |
+
embeddings = embedder.encode(texts, convert_to_numpy=True)
|
50 |
+
dim = embeddings.shape[1]
|
51 |
+
index = faiss.IndexFlatL2(dim) # CPU index
|
52 |
+
index.add(embeddings)
|
53 |
+
faiss.write_index(index, index_path)
|
54 |
+
|
55 |
if __name__ == "__main__":
|
56 |
+
ingest_and_push()
|