File size: 6,619 Bytes
9aef153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb863f0
9aef153
 
 
86eb78e
 
 
 
 
 
 
 
 
 
 
 
 
7753b87
86eb78e
 
 
 
 
7753b87
86eb78e
7753b87
86eb78e
 
9aef153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import streamlit as st
import sqlite3
import pandas as pd
import openai
import os

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma

os.environ["OPENAI_API_KEY"] = os.getenv("SECRET_KEY")

def init_database():
    conn = sqlite3.connect('GPTPromptTemplates.db')
    cursor = conn.cursor()

    cursor.execute('''
        CREATE TABLE IF NOT EXISTS USERS (
            USER_ID INTEGER PRIMARY KEY,
            User_Name VARCHAR(255)
        )
    ''')

    cursor.execute('''
        CREATE TABLE IF NOT EXISTS TEMPLATES (
            TEMPLATE_ID INTEGER PRIMARY KEY,
            USER_ID INTEGER,
            Prompt_Name VARCHAR(255),
            Prompt_Text TEXT
        )
    ''')

    cursor.execute('''
        CREATE UNIQUE INDEX IF NOT EXISTS idx_templates_prompt_name ON TEMPLATES (USER_ID, Prompt_Name)
    ''')

    conn.commit()
    conn.close()

def insert_prompt_template(user_id, prompt_name, prompt_text):
    conn = sqlite3.connect('GPTPromptTemplates.db')
    cursor = conn.cursor()
    cursor.execute('INSERT OR REPLACE INTO TEMPLATES (USER_ID, Prompt_Name, Prompt_Text) VALUES (?, ?, ?)', (user_id, prompt_name, prompt_text))
    conn.commit()
    conn.close()

def delete_prompt_template(user_id, prompt_name):
    conn = sqlite3.connect('GPTPromptTemplates.db')
    cursor = conn.cursor()
    cursor.execute('DELETE FROM TEMPLATES WHERE USER_ID = ? AND prompt_name = ?', (user_id, prompt_name))
    conn.commit()
    conn.close()

def get_prompt(user_id, prompt_name):
    conn = sqlite3.connect('GPTPromptTemplates.db')
    cursor = conn.cursor()
    cursor.execute('SELECT Prompt_Name, Prompt_Text FROM TEMPLATES WHERE Prompt_Name = ? AND USER_ID = ?', (prompt_name, user_id))
    template = cursor.fetchone()
    conn.close()

    if template == None:
      return '',''
    else:
      return template[0], template[1]

def get_default_prompt(user_id):
    conn = sqlite3.connect('GPTPromptTemplates.db')
    cursor = conn.cursor()
    cursor.execute('SELECT Prompt_Name, Prompt_Text FROM TEMPLATES WHERE USER_ID = ? ORDER BY Prompt_Name ASC LIMIT 1', (user_id, ))
    template = cursor.fetchone()
    conn.close()

    if template == None:
      return '',''
    else:
      return template[0], template[1]

def get_prompt_list(user_id):
    conn = sqlite3.connect('GPTPromptTemplates.db')
    templates = pd.read_sql_query('SELECT DISTINCT Prompt_Name FROM TEMPLATES WHERE USER_ID = {} ORDER BY Prompt_Name ASC'.format(user_id), conn)
    conn.commit()
    conn.close()

    return templates

def template_change_value():
    name, prompt = get_prompt(st.session_state.user_id, st.session_state.template_select)
    st.session_state.name = name
    st.session_state.prompt = prompt

def template_return_value(template_name):
    st.session_state.template_select = template_name
    name, prompt = get_prompt(st.session_state.user_id, st.session_state.template_select)
    st.session_state.name = name
    st.session_state.prompt = prompt

def main():
    st.title("Working with Chat GPT with templates")

    init_database()

    col1, col2, col3 = st.columns([1,1,1])

    user_id = 1
    name, prompt = get_default_prompt(user_id)
    prompt_list = get_prompt_list(user_id)
    model_names = ['gpt-4','gpt-3.5-turbo','gpt-3.5-turbo-16k']

    if not "initialized" in st.session_state:
      st.session_state.user_id = user_id
      st.session_state.name = name
      st.session_state.prompt = prompt
      st.session_state.prompt_list = prompt_list
      st.session_state.template_select = name
      st.session_state.output = ''
      st.session_state.model_name = 'gpt-4'
      st.session_state.initialized = True

    with col1:

      input_text = st.text_area('Please insert data for transforming', '', key="input_data", height=450)

      if st.button("Apply"):
        query = prompt
        with st.spinner('In progress...'):
#        st.write("in progress")
#        text_splitter = CharacterTextSplitter(chunk_size=4096, chunk_overlap=0)
#        texts = text_splitter.split_text(input_text)
#        embeddings = OpenAIEmbeddings()
#        docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
#        docs = docsearch.get_relevant_documents(query)
            if st.session_state.model_name == 'gpt-4': 
                max_tkns=5500
            else : 
                max_tkns=3000
            openai.api_key = os.environ["OPENAI_API_KEY"]
            response = openai.ChatCompletion.create(
                model=st.session_state.model_name,
                messages=[
                    {"role": "system", "content": query},
                    {"role": "user", "content": input_text},
                    ],
                temperature = 0.7,
                max_tokens=max_tkns
            )
            st.session_state.output = response["choices"][0]["message"]["content"].replace("\\n", "\n")
#        chain = load_qa_chain(ChatOpenAI(model = st.session_state.model_name,max_tokens=max_tkns,temperature=0), chain_type="stuff")
#        st.session_state.output = chain.run(input_documents=docs, question=query)
        #st.session_state["output"] = output
        #col3.text_area('Result', value=output, key="output_data", height=450)
        st.experimental_rerun()
        st.success("Ready!")


    with col2:
      st.session_state.model_name = st.selectbox("GPT model: ",model_names, key="gpt_model")
      template_return_value(st.selectbox("Template: ",st.session_state.prompt_list, key="prompt_template",))
      new_name = st.text_input("Template name:",value=st.session_state.name, key="template_name")
      input_query = st.text_area("Prompt:",value=st.session_state.prompt, key="template_text", height=200)

      col4, col5 = st.columns([1,1])
      if col4.button("Save"):
          insert_prompt_template(user_id, new_name, input_query)
          st.session_state.prompt_list = get_prompt_list(user_id)
          st.success("Prompt saved!")
          st.experimental_rerun()

      if col5.button("Delete"):
          delete_prompt_template(user_id, new_name)
          st.session_state.prompt_list = get_prompt_list(user_id)
          st.success("Prompt deleted!")
          st.experimental_rerun()          

    with col3:
      txt_result = st.text_area('Result', value=st.session_state.output, key="output_data", height=450)


if __name__ == "__main__":
    main()