Spaces:
Sleeping
Sleeping
Commit
·
c94eabd
1
Parent(s):
d9a9e61
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,9 @@ label_encoder = joblib.load('WSP_label_encoder.joblib')
|
|
11 |
|
12 |
input_phrase = st.text_input("Input search text")
|
13 |
|
|
|
|
|
|
|
14 |
if input_phrase:
|
15 |
tokenized_input = tokenizer(input_phrase, truncation=True, padding=True, return_tensors='pt')
|
16 |
|
@@ -18,6 +21,10 @@ if input_phrase:
|
|
18 |
outputs = loaded_model(**tokenized_input)
|
19 |
|
20 |
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
21 |
-
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
input_phrase = st.text_input("Input search text")
|
13 |
|
14 |
+
# Добавляем слайдер для выбора вероятности
|
15 |
+
confidence_threshold = st.slider("Confidence Threshold (%)", 0, 100, 50)
|
16 |
+
|
17 |
if input_phrase:
|
18 |
tokenized_input = tokenizer(input_phrase, truncation=True, padding=True, return_tensors='pt')
|
19 |
|
|
|
21 |
outputs = loaded_model(**tokenized_input)
|
22 |
|
23 |
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
24 |
+
predicted_confidence = torch.softmax(outputs.logits, dim=1)[0][predicted_class].item() * 100
|
25 |
|
26 |
+
if predicted_confidence >= confidence_threshold:
|
27 |
+
predicted_category = label_encoder.inverse_transform([predicted_class])[0]
|
28 |
+
st.text(f"Output: {predicted_category}")
|
29 |
+
else:
|
30 |
+
st.text(f"Output: {input_phrase}")
|