Spaces:
Sleeping
Sleeping
Commit
·
9c68243
1
Parent(s):
3ff0551
Upload 5 files
Browse files- .gitattributes +4 -0
- app.py +116 -66
- teeth_01.png +0 -0
- teeth_02.png +0 -0
- teeth_03.png +0 -0
- teeth_04.png +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
teeth_01.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
teeth_02.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
teeth_03.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
teeth_04.png filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -4,13 +4,14 @@ from PIL import Image
|
|
| 4 |
import numpy as np
|
| 5 |
import cv2
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
-
|
|
|
|
| 8 |
|
| 9 |
model=tf.keras.models.load_model("dental_xray_seg.h5")
|
| 10 |
|
| 11 |
st.header("Segmentation of Teeth in Panoramic X-ray Image")
|
| 12 |
|
| 13 |
-
examples=["teeth_01.png","teeth_02.png","teeth_03.png","teeth_04.png"
|
| 14 |
|
| 15 |
def load_image(image_file):
|
| 16 |
img = Image.open(image_file)
|
|
@@ -31,12 +32,82 @@ def convert_rgb(img):
|
|
| 31 |
return img
|
| 32 |
else:
|
| 33 |
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
-
st.subheader("Upload Dental Panoramic X-ray Image
|
| 37 |
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
|
| 38 |
|
| 39 |
-
col1, col2, col3, col4
|
| 40 |
with col1:
|
| 41 |
ex=load_image(examples[0])
|
| 42 |
st.image(ex,width=200)
|
|
@@ -61,69 +132,48 @@ with col4:
|
|
| 61 |
if st.button('Example 4'):
|
| 62 |
image_file=examples[3]
|
| 63 |
|
| 64 |
-
with col5:
|
| 65 |
-
ex2=load_image(examples[4])
|
| 66 |
-
st.image(ex2,width=200)
|
| 67 |
-
if st.button('Example 5'):
|
| 68 |
-
image_file=examples[4]
|
| 69 |
-
|
| 70 |
if image_file is not None:
|
| 71 |
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
# img_cv=np.reshape(img_cv,(1,512,512,1))
|
| 116 |
-
# predict_img=model.predict(img_cv)
|
| 117 |
-
# predict=predict_img[1,:,:,0]
|
| 118 |
-
# plt.imsave("predict.png",predict_img)
|
| 119 |
-
#
|
| 120 |
-
# ## Plotting - Пример результата
|
| 121 |
-
# img = cv2.imread(image_file)
|
| 122 |
-
#
|
| 123 |
-
# predict1 = cv2.resize(predict_img, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
| 124 |
-
#
|
| 125 |
-
# mask = np.uint8(predict1 * 255)
|
| 126 |
-
# _, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
|
| 127 |
-
# cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 128 |
-
# img = cv2.drawContours(img, cnts, -1, (255, 0, 0), 2)
|
| 129 |
-
# cv2_imshow(img)
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import cv2
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
+
from imutils import perspective
|
| 8 |
+
from scipy.spatial import distance as dist
|
| 9 |
|
| 10 |
model=tf.keras.models.load_model("dental_xray_seg.h5")
|
| 11 |
|
| 12 |
st.header("Segmentation of Teeth in Panoramic X-ray Image")
|
| 13 |
|
| 14 |
+
examples=["teeth_01.png","teeth_02.png","teeth_03.png","teeth_04.png"]
|
| 15 |
|
| 16 |
def load_image(image_file):
|
| 17 |
img = Image.open(image_file)
|
|
|
|
| 32 |
return img
|
| 33 |
else:
|
| 34 |
return img
|
| 35 |
+
|
| 36 |
+
def midpoint(ptA, ptB):
|
| 37 |
+
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
|
| 38 |
+
|
| 39 |
+
def CCA_Analysis(orig_image,predict_image,erode_iteration,open_iteration):
|
| 40 |
+
kernel1 =( np.ones((5,5), dtype=np.float32))
|
| 41 |
+
kernel_sharpening = np.array([[-1,-1,-1],
|
| 42 |
+
[-1,9,-1],
|
| 43 |
+
[-1,-1,-1]])
|
| 44 |
+
image = predict_image
|
| 45 |
+
image2 =orig_image
|
| 46 |
+
image=cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel1,iterations=open_iteration )
|
| 47 |
+
image = cv2.filter2D(image, -1, kernel_sharpening)
|
| 48 |
+
image=cv2.erode(image,kernel1,iterations =erode_iteration)
|
| 49 |
+
image=cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 50 |
+
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
|
| 51 |
+
labels=cv2.connectedComponents(thresh,connectivity=8)[1]
|
| 52 |
+
a=np.unique(labels)
|
| 53 |
+
count2=0
|
| 54 |
+
for label in a:
|
| 55 |
+
if label == 0:
|
| 56 |
+
continue
|
| 57 |
+
|
| 58 |
+
# Create a mask
|
| 59 |
+
mask = np.zeros(thresh.shape, dtype="uint8")
|
| 60 |
+
mask[labels == label] = 255
|
| 61 |
+
# Find contours and determine contour area
|
| 62 |
+
cnts,hieararch = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 63 |
+
cnts = cnts[0]
|
| 64 |
+
c_area = cv2.contourArea(cnts)
|
| 65 |
+
# threshhold for tooth count
|
| 66 |
+
if c_area>1000:
|
| 67 |
+
count2+=1
|
| 68 |
+
|
| 69 |
+
(x,y),radius = cv2.minEnclosingCircle(cnts)
|
| 70 |
+
rect = cv2.minAreaRect(cnts)
|
| 71 |
+
box = cv2.boxPoints(rect)
|
| 72 |
+
box = np.array(box, dtype="int")
|
| 73 |
+
box = perspective.order_points(box)
|
| 74 |
+
color1 = (list(np.random.choice(range(150), size=3)))
|
| 75 |
+
color =[int(color1[0]), int(color1[1]), int(color1[2])]
|
| 76 |
+
cv2.drawContours(image2,[box.astype("int")],0,color,2)
|
| 77 |
+
(tl,tr,br,bl)=box
|
| 78 |
+
|
| 79 |
+
(tltrX,tltrY)=midpoint(tl,tr)
|
| 80 |
+
(blbrX,blbrY)=midpoint(bl,br)
|
| 81 |
+
# compute the midpoint between the top-left and top-right points,
|
| 82 |
+
# followed by the midpoint between the top-righ and bottom-right
|
| 83 |
+
(tlblX,tlblY)=midpoint(tl,bl)
|
| 84 |
+
(trbrX,trbrY)=midpoint(tr,br)
|
| 85 |
+
# draw the midpoints on the image
|
| 86 |
+
cv2.circle(image2, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
|
| 87 |
+
cv2.circle(image2, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
|
| 88 |
+
cv2.circle(image2, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
|
| 89 |
+
cv2.circle(image2, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
|
| 90 |
+
cv2.line(image2, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),color, 2)
|
| 91 |
+
cv2.line(image2, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),color, 2)
|
| 92 |
+
dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
|
| 93 |
+
dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
pixelsPerMetric=1
|
| 98 |
+
dimA = dA * pixelsPerMetric
|
| 99 |
+
dimB = dB *pixelsPerMetric
|
| 100 |
+
cv2.putText(image2, "{:.1f}pixel".format(dimA),(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
|
| 101 |
+
cv2.putText(image2, "{:.1f}pixel".format(dimB),(int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
|
| 102 |
+
cv2.putText(image2, "{:.1f}".format(label),(int(tltrX - 35), int(tltrY - 5)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
|
| 103 |
+
teeth_count=count2
|
| 104 |
+
return image2,teeth_count
|
| 105 |
|
| 106 |
|
| 107 |
+
st.subheader("Upload Dental Panoramic X-ray Image")
|
| 108 |
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
|
| 109 |
|
| 110 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 111 |
with col1:
|
| 112 |
ex=load_image(examples[0])
|
| 113 |
st.image(ex,width=200)
|
|
|
|
| 132 |
if st.button('Example 4'):
|
| 133 |
image_file=examples[3]
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
if image_file is not None:
|
| 136 |
|
| 137 |
+
image=cv2.imread(image_file)
|
| 138 |
|
| 139 |
+
st.text("Making A Prediction ....")
|
| 140 |
+
st.image(img,width=1100)
|
| 141 |
|
| 142 |
+
img=np.asarray(image)
|
| 143 |
+
|
| 144 |
+
img_cv=convert_one_channel(img)
|
| 145 |
+
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
|
| 146 |
+
img_cv=np.float32(img_cv/255)
|
| 147 |
+
|
| 148 |
+
img_cv=np.reshape(img_cv,(1,512,512,1))
|
| 149 |
+
prediction=model.predict(img_cv)
|
| 150 |
+
predicted=prediction[0]
|
| 151 |
+
predicted_rgb = np.expand_dims(predicted, axis=-1)
|
| 152 |
+
plt.imsave("predict.png",predicted_rgb)
|
| 153 |
+
|
| 154 |
+
predict1 = cv2.resize(predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
| 155 |
+
|
| 156 |
+
mask = np.uint8(predict1 * 255)
|
| 157 |
+
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
|
| 158 |
+
cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 159 |
+
img = cv2.drawContours(img, cnts, -1, (255, 0, 0), 2)
|
| 160 |
+
|
| 161 |
+
if img is not None :
|
| 162 |
+
st.subheader("Predicted Image")
|
| 163 |
+
st.write(img.shape)
|
| 164 |
+
st.image(img,width=1100)
|
| 165 |
+
|
| 166 |
+
if image.shape[1] < 3000:
|
| 167 |
+
image = cv2.resize(image,(3100,1150),interpolation=cv2.INTER_LANCZOS4)
|
| 168 |
+
predicted=cv2.imread("predict.png")
|
| 169 |
+
predicted = cv2.resize(predicted, (image.shape[1],image.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
| 170 |
+
cca_result,teeth_count=CCA_Analysis(image,predicted,3,2)
|
| 171 |
+
if cca_result is not None :
|
| 172 |
+
st.subheader("Predicted Image")
|
| 173 |
+
st.write(cca_result.shape)
|
| 174 |
+
st.image(cca_result,width=1100)
|
| 175 |
+
|
| 176 |
+
st.text(teeth_count,"Teeth Count")
|
| 177 |
+
|
| 178 |
+
st.text("DONE ! ....")
|
| 179 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
teeth_01.png
CHANGED
|
|
Git LFS Details
|
teeth_02.png
CHANGED
|
|
Git LFS Details
|
teeth_03.png
CHANGED
|
|
Git LFS Details
|
teeth_04.png
CHANGED
|
|
Git LFS Details
|