Spaces:
Sleeping
Sleeping
EmreYY20
commited on
Commit
·
97f7d3e
1
Parent(s):
2a61e91
add metric
Browse files- app.py +27 -1
- extractive_model.py +2 -0
app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import PyPDF2
|
| 3 |
-
from extractive_model import summarize_with_textrank
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Set page to wide mode
|
| 6 |
st.set_page_config(layout="wide")
|
|
@@ -13,6 +15,14 @@ def load_pdf(file):
|
|
| 13 |
pdf_text += pdf_reader.pages[page_num].extract_text() or ""
|
| 14 |
return pdf_text
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# Main app
|
| 17 |
def main():
|
| 18 |
st.title("Terms of Service Summarizer")
|
|
@@ -33,6 +43,12 @@ def main():
|
|
| 33 |
if uploaded_file and user_input:
|
| 34 |
st.warning("Please provide either text input or a PDF file, not both.")
|
| 35 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
elif uploaded_file:
|
| 37 |
# Extract text from PDF
|
| 38 |
file_content = load_pdf(uploaded_file)
|
|
@@ -48,11 +64,21 @@ def main():
|
|
| 48 |
summary = summarize_with_textrank(file_content)
|
| 49 |
st.session_state.summary = summary
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# Right column: Displaying text after pressing 'Summarize'
|
| 52 |
with col3:
|
| 53 |
st.write("Summary:")
|
| 54 |
if 'summary' in st.session_state:
|
| 55 |
st.write(st.session_state.summary)
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
if __name__ == "__main__":
|
| 58 |
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import PyPDF2
|
| 3 |
+
from extractive_model import summarize_with_textrank
|
| 4 |
+
from nltk.tokenize import sent_tokenize
|
| 5 |
+
|
| 6 |
|
| 7 |
# Set page to wide mode
|
| 8 |
st.set_page_config(layout="wide")
|
|
|
|
| 15 |
pdf_text += pdf_reader.pages[page_num].extract_text() or ""
|
| 16 |
return pdf_text
|
| 17 |
|
| 18 |
+
# Function to calculate overlap
|
| 19 |
+
def calculate_overlap(original_text, summary_text):
|
| 20 |
+
original_sentences = set(sent_tokenize(original_text))
|
| 21 |
+
summary_sentences = set(sent_tokenize(summary_text))
|
| 22 |
+
overlap_count = sum(1 for sentence in summary_sentences if sentence in original_sentences)
|
| 23 |
+
overlap_percentage = (overlap_count / len(original_sentences)) * 100 if original_sentences else 0
|
| 24 |
+
return overlap_percentage
|
| 25 |
+
|
| 26 |
# Main app
|
| 27 |
def main():
|
| 28 |
st.title("Terms of Service Summarizer")
|
|
|
|
| 43 |
if uploaded_file and user_input:
|
| 44 |
st.warning("Please provide either text input or a PDF file, not both.")
|
| 45 |
return
|
| 46 |
+
|
| 47 |
+
# Perform overlap calculation
|
| 48 |
+
if 'summary' in st.session_state:
|
| 49 |
+
overlap = calculate_overlap(file_content, st.session_state.summary)
|
| 50 |
+
st.session_state.overlap = overlap
|
| 51 |
+
|
| 52 |
elif uploaded_file:
|
| 53 |
# Extract text from PDF
|
| 54 |
file_content = load_pdf(uploaded_file)
|
|
|
|
| 64 |
summary = summarize_with_textrank(file_content)
|
| 65 |
st.session_state.summary = summary
|
| 66 |
|
| 67 |
+
# Perform extractive summarization
|
| 68 |
+
if radio_selection == "Abstractive":
|
| 69 |
+
None
|
| 70 |
+
#summary = summarize_with_textrank(file_content)
|
| 71 |
+
#st.session_state.summary = summary
|
| 72 |
+
|
| 73 |
# Right column: Displaying text after pressing 'Summarize'
|
| 74 |
with col3:
|
| 75 |
st.write("Summary:")
|
| 76 |
if 'summary' in st.session_state:
|
| 77 |
st.write(st.session_state.summary)
|
| 78 |
|
| 79 |
+
# Display overlap percentage
|
| 80 |
+
if 'overlap' in st.session_state:
|
| 81 |
+
st.write(f"Overlap with Original Text: {st.session_state.overlap:.2f}%")
|
| 82 |
+
|
| 83 |
if __name__ == "__main__":
|
| 84 |
main()
|
extractive_model.py
CHANGED
|
@@ -12,6 +12,8 @@ from sumy.utils import get_stop_words"""
|
|
| 12 |
from sumy.parsers.plaintext import PlaintextParser
|
| 13 |
from sumy.nlp.tokenizers import Tokenizer
|
| 14 |
from sumy.summarizers.text_rank import TextRankSummarizer
|
|
|
|
|
|
|
| 15 |
import nltk
|
| 16 |
nltk.download('punkt')
|
| 17 |
|
|
|
|
| 12 |
from sumy.parsers.plaintext import PlaintextParser
|
| 13 |
from sumy.nlp.tokenizers import Tokenizer
|
| 14 |
from sumy.summarizers.text_rank import TextRankSummarizer
|
| 15 |
+
from sumy.summarizers.lsa import LsaSummarizer
|
| 16 |
+
from sumy.summarizers.lex_rank import LexRankSummarizer
|
| 17 |
import nltk
|
| 18 |
nltk.download('punkt')
|
| 19 |
|