Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import copy | |
| import math | |
| import warnings | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from torch import Tensor | |
| from annotator.uniformer.mmcv.utils import Registry, build_from_cfg, get_logger, print_log | |
| INITIALIZERS = Registry('initializer') | |
| def update_init_info(module, init_info): | |
| """Update the `_params_init_info` in the module if the value of parameters | |
| are changed. | |
| Args: | |
| module (obj:`nn.Module`): The module of PyTorch with a user-defined | |
| attribute `_params_init_info` which records the initialization | |
| information. | |
| init_info (str): The string that describes the initialization. | |
| """ | |
| assert hasattr( | |
| module, | |
| '_params_init_info'), f'Can not find `_params_init_info` in {module}' | |
| for name, param in module.named_parameters(): | |
| assert param in module._params_init_info, ( | |
| f'Find a new :obj:`Parameter` ' | |
| f'named `{name}` during executing the ' | |
| f'`init_weights` of ' | |
| f'`{module.__class__.__name__}`. ' | |
| f'Please do not add or ' | |
| f'replace parameters during executing ' | |
| f'the `init_weights`. ') | |
| # The parameter has been changed during executing the | |
| # `init_weights` of module | |
| mean_value = param.data.mean() | |
| if module._params_init_info[param]['tmp_mean_value'] != mean_value: | |
| module._params_init_info[param]['init_info'] = init_info | |
| module._params_init_info[param]['tmp_mean_value'] = mean_value | |
| def constant_init(module, val, bias=0): | |
| if hasattr(module, 'weight') and module.weight is not None: | |
| nn.init.constant_(module.weight, val) | |
| if hasattr(module, 'bias') and module.bias is not None: | |
| nn.init.constant_(module.bias, bias) | |
| def xavier_init(module, gain=1, bias=0, distribution='normal'): | |
| assert distribution in ['uniform', 'normal'] | |
| if hasattr(module, 'weight') and module.weight is not None: | |
| if distribution == 'uniform': | |
| nn.init.xavier_uniform_(module.weight, gain=gain) | |
| else: | |
| nn.init.xavier_normal_(module.weight, gain=gain) | |
| if hasattr(module, 'bias') and module.bias is not None: | |
| nn.init.constant_(module.bias, bias) | |
| def normal_init(module, mean=0, std=1, bias=0): | |
| if hasattr(module, 'weight') and module.weight is not None: | |
| nn.init.normal_(module.weight, mean, std) | |
| if hasattr(module, 'bias') and module.bias is not None: | |
| nn.init.constant_(module.bias, bias) | |
| def trunc_normal_init(module: nn.Module, | |
| mean: float = 0, | |
| std: float = 1, | |
| a: float = -2, | |
| b: float = 2, | |
| bias: float = 0) -> None: | |
| if hasattr(module, 'weight') and module.weight is not None: | |
| trunc_normal_(module.weight, mean, std, a, b) # type: ignore | |
| if hasattr(module, 'bias') and module.bias is not None: | |
| nn.init.constant_(module.bias, bias) # type: ignore | |
| def uniform_init(module, a=0, b=1, bias=0): | |
| if hasattr(module, 'weight') and module.weight is not None: | |
| nn.init.uniform_(module.weight, a, b) | |
| if hasattr(module, 'bias') and module.bias is not None: | |
| nn.init.constant_(module.bias, bias) | |
| def kaiming_init(module, | |
| a=0, | |
| mode='fan_out', | |
| nonlinearity='relu', | |
| bias=0, | |
| distribution='normal'): | |
| assert distribution in ['uniform', 'normal'] | |
| if hasattr(module, 'weight') and module.weight is not None: | |
| if distribution == 'uniform': | |
| nn.init.kaiming_uniform_( | |
| module.weight, a=a, mode=mode, nonlinearity=nonlinearity) | |
| else: | |
| nn.init.kaiming_normal_( | |
| module.weight, a=a, mode=mode, nonlinearity=nonlinearity) | |
| if hasattr(module, 'bias') and module.bias is not None: | |
| nn.init.constant_(module.bias, bias) | |
| def caffe2_xavier_init(module, bias=0): | |
| # `XavierFill` in Caffe2 corresponds to `kaiming_uniform_` in PyTorch | |
| # Acknowledgment to FAIR's internal code | |
| kaiming_init( | |
| module, | |
| a=1, | |
| mode='fan_in', | |
| nonlinearity='leaky_relu', | |
| bias=bias, | |
| distribution='uniform') | |
| def bias_init_with_prob(prior_prob): | |
| """initialize conv/fc bias value according to a given probability value.""" | |
| bias_init = float(-np.log((1 - prior_prob) / prior_prob)) | |
| return bias_init | |
| def _get_bases_name(m): | |
| return [b.__name__ for b in m.__class__.__bases__] | |
| class BaseInit(object): | |
| def __init__(self, *, bias=0, bias_prob=None, layer=None): | |
| self.wholemodule = False | |
| if not isinstance(bias, (int, float)): | |
| raise TypeError(f'bias must be a number, but got a {type(bias)}') | |
| if bias_prob is not None: | |
| if not isinstance(bias_prob, float): | |
| raise TypeError(f'bias_prob type must be float, \ | |
| but got {type(bias_prob)}') | |
| if layer is not None: | |
| if not isinstance(layer, (str, list)): | |
| raise TypeError(f'layer must be a str or a list of str, \ | |
| but got a {type(layer)}') | |
| else: | |
| layer = [] | |
| if bias_prob is not None: | |
| self.bias = bias_init_with_prob(bias_prob) | |
| else: | |
| self.bias = bias | |
| self.layer = [layer] if isinstance(layer, str) else layer | |
| def _get_init_info(self): | |
| info = f'{self.__class__.__name__}, bias={self.bias}' | |
| return info | |
| class ConstantInit(BaseInit): | |
| """Initialize module parameters with constant values. | |
| Args: | |
| val (int | float): the value to fill the weights in the module with | |
| bias (int | float): the value to fill the bias. Defaults to 0. | |
| bias_prob (float, optional): the probability for bias initialization. | |
| Defaults to None. | |
| layer (str | list[str], optional): the layer will be initialized. | |
| Defaults to None. | |
| """ | |
| def __init__(self, val, **kwargs): | |
| super().__init__(**kwargs) | |
| self.val = val | |
| def __call__(self, module): | |
| def init(m): | |
| if self.wholemodule: | |
| constant_init(m, self.val, self.bias) | |
| else: | |
| layername = m.__class__.__name__ | |
| basesname = _get_bases_name(m) | |
| if len(set(self.layer) & set([layername] + basesname)): | |
| constant_init(m, self.val, self.bias) | |
| module.apply(init) | |
| if hasattr(module, '_params_init_info'): | |
| update_init_info(module, init_info=self._get_init_info()) | |
| def _get_init_info(self): | |
| info = f'{self.__class__.__name__}: val={self.val}, bias={self.bias}' | |
| return info | |
| class XavierInit(BaseInit): | |
| r"""Initialize module parameters with values according to the method | |
| described in `Understanding the difficulty of training deep feedforward | |
| neural networks - Glorot, X. & Bengio, Y. (2010). | |
| <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_ | |
| Args: | |
| gain (int | float): an optional scaling factor. Defaults to 1. | |
| bias (int | float): the value to fill the bias. Defaults to 0. | |
| bias_prob (float, optional): the probability for bias initialization. | |
| Defaults to None. | |
| distribution (str): distribution either be ``'normal'`` | |
| or ``'uniform'``. Defaults to ``'normal'``. | |
| layer (str | list[str], optional): the layer will be initialized. | |
| Defaults to None. | |
| """ | |
| def __init__(self, gain=1, distribution='normal', **kwargs): | |
| super().__init__(**kwargs) | |
| self.gain = gain | |
| self.distribution = distribution | |
| def __call__(self, module): | |
| def init(m): | |
| if self.wholemodule: | |
| xavier_init(m, self.gain, self.bias, self.distribution) | |
| else: | |
| layername = m.__class__.__name__ | |
| basesname = _get_bases_name(m) | |
| if len(set(self.layer) & set([layername] + basesname)): | |
| xavier_init(m, self.gain, self.bias, self.distribution) | |
| module.apply(init) | |
| if hasattr(module, '_params_init_info'): | |
| update_init_info(module, init_info=self._get_init_info()) | |
| def _get_init_info(self): | |
| info = f'{self.__class__.__name__}: gain={self.gain}, ' \ | |
| f'distribution={self.distribution}, bias={self.bias}' | |
| return info | |
| class NormalInit(BaseInit): | |
| r"""Initialize module parameters with the values drawn from the normal | |
| distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`. | |
| Args: | |
| mean (int | float):the mean of the normal distribution. Defaults to 0. | |
| std (int | float): the standard deviation of the normal distribution. | |
| Defaults to 1. | |
| bias (int | float): the value to fill the bias. Defaults to 0. | |
| bias_prob (float, optional): the probability for bias initialization. | |
| Defaults to None. | |
| layer (str | list[str], optional): the layer will be initialized. | |
| Defaults to None. | |
| """ | |
| def __init__(self, mean=0, std=1, **kwargs): | |
| super().__init__(**kwargs) | |
| self.mean = mean | |
| self.std = std | |
| def __call__(self, module): | |
| def init(m): | |
| if self.wholemodule: | |
| normal_init(m, self.mean, self.std, self.bias) | |
| else: | |
| layername = m.__class__.__name__ | |
| basesname = _get_bases_name(m) | |
| if len(set(self.layer) & set([layername] + basesname)): | |
| normal_init(m, self.mean, self.std, self.bias) | |
| module.apply(init) | |
| if hasattr(module, '_params_init_info'): | |
| update_init_info(module, init_info=self._get_init_info()) | |
| def _get_init_info(self): | |
| info = f'{self.__class__.__name__}: mean={self.mean},' \ | |
| f' std={self.std}, bias={self.bias}' | |
| return info | |
| class TruncNormalInit(BaseInit): | |
| r"""Initialize module parameters with the values drawn from the normal | |
| distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values | |
| outside :math:`[a, b]`. | |
| Args: | |
| mean (float): the mean of the normal distribution. Defaults to 0. | |
| std (float): the standard deviation of the normal distribution. | |
| Defaults to 1. | |
| a (float): The minimum cutoff value. | |
| b ( float): The maximum cutoff value. | |
| bias (float): the value to fill the bias. Defaults to 0. | |
| bias_prob (float, optional): the probability for bias initialization. | |
| Defaults to None. | |
| layer (str | list[str], optional): the layer will be initialized. | |
| Defaults to None. | |
| """ | |
| def __init__(self, | |
| mean: float = 0, | |
| std: float = 1, | |
| a: float = -2, | |
| b: float = 2, | |
| **kwargs) -> None: | |
| super().__init__(**kwargs) | |
| self.mean = mean | |
| self.std = std | |
| self.a = a | |
| self.b = b | |
| def __call__(self, module: nn.Module) -> None: | |
| def init(m): | |
| if self.wholemodule: | |
| trunc_normal_init(m, self.mean, self.std, self.a, self.b, | |
| self.bias) | |
| else: | |
| layername = m.__class__.__name__ | |
| basesname = _get_bases_name(m) | |
| if len(set(self.layer) & set([layername] + basesname)): | |
| trunc_normal_init(m, self.mean, self.std, self.a, self.b, | |
| self.bias) | |
| module.apply(init) | |
| if hasattr(module, '_params_init_info'): | |
| update_init_info(module, init_info=self._get_init_info()) | |
| def _get_init_info(self): | |
| info = f'{self.__class__.__name__}: a={self.a}, b={self.b},' \ | |
| f' mean={self.mean}, std={self.std}, bias={self.bias}' | |
| return info | |
| class UniformInit(BaseInit): | |
| r"""Initialize module parameters with values drawn from the uniform | |
| distribution :math:`\mathcal{U}(a, b)`. | |
| Args: | |
| a (int | float): the lower bound of the uniform distribution. | |
| Defaults to 0. | |
| b (int | float): the upper bound of the uniform distribution. | |
| Defaults to 1. | |
| bias (int | float): the value to fill the bias. Defaults to 0. | |
| bias_prob (float, optional): the probability for bias initialization. | |
| Defaults to None. | |
| layer (str | list[str], optional): the layer will be initialized. | |
| Defaults to None. | |
| """ | |
| def __init__(self, a=0, b=1, **kwargs): | |
| super().__init__(**kwargs) | |
| self.a = a | |
| self.b = b | |
| def __call__(self, module): | |
| def init(m): | |
| if self.wholemodule: | |
| uniform_init(m, self.a, self.b, self.bias) | |
| else: | |
| layername = m.__class__.__name__ | |
| basesname = _get_bases_name(m) | |
| if len(set(self.layer) & set([layername] + basesname)): | |
| uniform_init(m, self.a, self.b, self.bias) | |
| module.apply(init) | |
| if hasattr(module, '_params_init_info'): | |
| update_init_info(module, init_info=self._get_init_info()) | |
| def _get_init_info(self): | |
| info = f'{self.__class__.__name__}: a={self.a},' \ | |
| f' b={self.b}, bias={self.bias}' | |
| return info | |
| class KaimingInit(BaseInit): | |
| r"""Initialize module parameters with the values according to the method | |
| described in `Delving deep into rectifiers: Surpassing human-level | |
| performance on ImageNet classification - He, K. et al. (2015). | |
| <https://www.cv-foundation.org/openaccess/content_iccv_2015/ | |
| papers/He_Delving_Deep_into_ICCV_2015_paper.pdf>`_ | |
| Args: | |
| a (int | float): the negative slope of the rectifier used after this | |
| layer (only used with ``'leaky_relu'``). Defaults to 0. | |
| mode (str): either ``'fan_in'`` or ``'fan_out'``. Choosing | |
| ``'fan_in'`` preserves the magnitude of the variance of the weights | |
| in the forward pass. Choosing ``'fan_out'`` preserves the | |
| magnitudes in the backwards pass. Defaults to ``'fan_out'``. | |
| nonlinearity (str): the non-linear function (`nn.functional` name), | |
| recommended to use only with ``'relu'`` or ``'leaky_relu'`` . | |
| Defaults to 'relu'. | |
| bias (int | float): the value to fill the bias. Defaults to 0. | |
| bias_prob (float, optional): the probability for bias initialization. | |
| Defaults to None. | |
| distribution (str): distribution either be ``'normal'`` or | |
| ``'uniform'``. Defaults to ``'normal'``. | |
| layer (str | list[str], optional): the layer will be initialized. | |
| Defaults to None. | |
| """ | |
| def __init__(self, | |
| a=0, | |
| mode='fan_out', | |
| nonlinearity='relu', | |
| distribution='normal', | |
| **kwargs): | |
| super().__init__(**kwargs) | |
| self.a = a | |
| self.mode = mode | |
| self.nonlinearity = nonlinearity | |
| self.distribution = distribution | |
| def __call__(self, module): | |
| def init(m): | |
| if self.wholemodule: | |
| kaiming_init(m, self.a, self.mode, self.nonlinearity, | |
| self.bias, self.distribution) | |
| else: | |
| layername = m.__class__.__name__ | |
| basesname = _get_bases_name(m) | |
| if len(set(self.layer) & set([layername] + basesname)): | |
| kaiming_init(m, self.a, self.mode, self.nonlinearity, | |
| self.bias, self.distribution) | |
| module.apply(init) | |
| if hasattr(module, '_params_init_info'): | |
| update_init_info(module, init_info=self._get_init_info()) | |
| def _get_init_info(self): | |
| info = f'{self.__class__.__name__}: a={self.a}, mode={self.mode}, ' \ | |
| f'nonlinearity={self.nonlinearity}, ' \ | |
| f'distribution ={self.distribution}, bias={self.bias}' | |
| return info | |
| class Caffe2XavierInit(KaimingInit): | |
| # `XavierFill` in Caffe2 corresponds to `kaiming_uniform_` in PyTorch | |
| # Acknowledgment to FAIR's internal code | |
| def __init__(self, **kwargs): | |
| super().__init__( | |
| a=1, | |
| mode='fan_in', | |
| nonlinearity='leaky_relu', | |
| distribution='uniform', | |
| **kwargs) | |
| def __call__(self, module): | |
| super().__call__(module) | |
| class PretrainedInit(object): | |
| """Initialize module by loading a pretrained model. | |
| Args: | |
| checkpoint (str): the checkpoint file of the pretrained model should | |
| be load. | |
| prefix (str, optional): the prefix of a sub-module in the pretrained | |
| model. it is for loading a part of the pretrained model to | |
| initialize. For example, if we would like to only load the | |
| backbone of a detector model, we can set ``prefix='backbone.'``. | |
| Defaults to None. | |
| map_location (str): map tensors into proper locations. | |
| """ | |
| def __init__(self, checkpoint, prefix=None, map_location=None): | |
| self.checkpoint = checkpoint | |
| self.prefix = prefix | |
| self.map_location = map_location | |
| def __call__(self, module): | |
| from annotator.uniformer.mmcv.runner import (_load_checkpoint_with_prefix, load_checkpoint, | |
| load_state_dict) | |
| logger = get_logger('mmcv') | |
| if self.prefix is None: | |
| print_log(f'load model from: {self.checkpoint}', logger=logger) | |
| load_checkpoint( | |
| module, | |
| self.checkpoint, | |
| map_location=self.map_location, | |
| strict=False, | |
| logger=logger) | |
| else: | |
| print_log( | |
| f'load {self.prefix} in model from: {self.checkpoint}', | |
| logger=logger) | |
| state_dict = _load_checkpoint_with_prefix( | |
| self.prefix, self.checkpoint, map_location=self.map_location) | |
| load_state_dict(module, state_dict, strict=False, logger=logger) | |
| if hasattr(module, '_params_init_info'): | |
| update_init_info(module, init_info=self._get_init_info()) | |
| def _get_init_info(self): | |
| info = f'{self.__class__.__name__}: load from {self.checkpoint}' | |
| return info | |
| def _initialize(module, cfg, wholemodule=False): | |
| func = build_from_cfg(cfg, INITIALIZERS) | |
| # wholemodule flag is for override mode, there is no layer key in override | |
| # and initializer will give init values for the whole module with the name | |
| # in override. | |
| func.wholemodule = wholemodule | |
| func(module) | |
| def _initialize_override(module, override, cfg): | |
| if not isinstance(override, (dict, list)): | |
| raise TypeError(f'override must be a dict or a list of dict, \ | |
| but got {type(override)}') | |
| override = [override] if isinstance(override, dict) else override | |
| for override_ in override: | |
| cp_override = copy.deepcopy(override_) | |
| name = cp_override.pop('name', None) | |
| if name is None: | |
| raise ValueError('`override` must contain the key "name",' | |
| f'but got {cp_override}') | |
| # if override only has name key, it means use args in init_cfg | |
| if not cp_override: | |
| cp_override.update(cfg) | |
| # if override has name key and other args except type key, it will | |
| # raise error | |
| elif 'type' not in cp_override.keys(): | |
| raise ValueError( | |
| f'`override` need "type" key, but got {cp_override}') | |
| if hasattr(module, name): | |
| _initialize(getattr(module, name), cp_override, wholemodule=True) | |
| else: | |
| raise RuntimeError(f'module did not have attribute {name}, ' | |
| f'but init_cfg is {cp_override}.') | |
| def initialize(module, init_cfg): | |
| """Initialize a module. | |
| Args: | |
| module (``torch.nn.Module``): the module will be initialized. | |
| init_cfg (dict | list[dict]): initialization configuration dict to | |
| define initializer. OpenMMLab has implemented 6 initializers | |
| including ``Constant``, ``Xavier``, ``Normal``, ``Uniform``, | |
| ``Kaiming``, and ``Pretrained``. | |
| Example: | |
| >>> module = nn.Linear(2, 3, bias=True) | |
| >>> init_cfg = dict(type='Constant', layer='Linear', val =1 , bias =2) | |
| >>> initialize(module, init_cfg) | |
| >>> module = nn.Sequential(nn.Conv1d(3, 1, 3), nn.Linear(1,2)) | |
| >>> # define key ``'layer'`` for initializing layer with different | |
| >>> # configuration | |
| >>> init_cfg = [dict(type='Constant', layer='Conv1d', val=1), | |
| dict(type='Constant', layer='Linear', val=2)] | |
| >>> initialize(module, init_cfg) | |
| >>> # define key``'override'`` to initialize some specific part in | |
| >>> # module | |
| >>> class FooNet(nn.Module): | |
| >>> def __init__(self): | |
| >>> super().__init__() | |
| >>> self.feat = nn.Conv2d(3, 16, 3) | |
| >>> self.reg = nn.Conv2d(16, 10, 3) | |
| >>> self.cls = nn.Conv2d(16, 5, 3) | |
| >>> model = FooNet() | |
| >>> init_cfg = dict(type='Constant', val=1, bias=2, layer='Conv2d', | |
| >>> override=dict(type='Constant', name='reg', val=3, bias=4)) | |
| >>> initialize(model, init_cfg) | |
| >>> model = ResNet(depth=50) | |
| >>> # Initialize weights with the pretrained model. | |
| >>> init_cfg = dict(type='Pretrained', | |
| checkpoint='torchvision://resnet50') | |
| >>> initialize(model, init_cfg) | |
| >>> # Initialize weights of a sub-module with the specific part of | |
| >>> # a pretrained model by using "prefix". | |
| >>> url = 'http://download.openmmlab.com/mmdetection/v2.0/retinanet/'\ | |
| >>> 'retinanet_r50_fpn_1x_coco/'\ | |
| >>> 'retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth' | |
| >>> init_cfg = dict(type='Pretrained', | |
| checkpoint=url, prefix='backbone.') | |
| """ | |
| if not isinstance(init_cfg, (dict, list)): | |
| raise TypeError(f'init_cfg must be a dict or a list of dict, \ | |
| but got {type(init_cfg)}') | |
| if isinstance(init_cfg, dict): | |
| init_cfg = [init_cfg] | |
| for cfg in init_cfg: | |
| # should deeply copy the original config because cfg may be used by | |
| # other modules, e.g., one init_cfg shared by multiple bottleneck | |
| # blocks, the expected cfg will be changed after pop and will change | |
| # the initialization behavior of other modules | |
| cp_cfg = copy.deepcopy(cfg) | |
| override = cp_cfg.pop('override', None) | |
| _initialize(module, cp_cfg) | |
| if override is not None: | |
| cp_cfg.pop('layer', None) | |
| _initialize_override(module, override, cp_cfg) | |
| else: | |
| # All attributes in module have same initialization. | |
| pass | |
| def _no_grad_trunc_normal_(tensor: Tensor, mean: float, std: float, a: float, | |
| b: float) -> Tensor: | |
| # Method based on | |
| # https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
| # Modified from | |
| # https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py | |
| def norm_cdf(x): | |
| # Computes standard normal cumulative distribution function | |
| return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
| if (mean < a - 2 * std) or (mean > b + 2 * std): | |
| warnings.warn( | |
| 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ' | |
| 'The distribution of values may be incorrect.', | |
| stacklevel=2) | |
| with torch.no_grad(): | |
| # Values are generated by using a truncated uniform distribution and | |
| # then using the inverse CDF for the normal distribution. | |
| # Get upper and lower cdf values | |
| lower = norm_cdf((a - mean) / std) | |
| upper = norm_cdf((b - mean) / std) | |
| # Uniformly fill tensor with values from [lower, upper], then translate | |
| # to [2lower-1, 2upper-1]. | |
| tensor.uniform_(2 * lower - 1, 2 * upper - 1) | |
| # Use inverse cdf transform for normal distribution to get truncated | |
| # standard normal | |
| tensor.erfinv_() | |
| # Transform to proper mean, std | |
| tensor.mul_(std * math.sqrt(2.)) | |
| tensor.add_(mean) | |
| # Clamp to ensure it's in the proper range | |
| tensor.clamp_(min=a, max=b) | |
| return tensor | |
| def trunc_normal_(tensor: Tensor, | |
| mean: float = 0., | |
| std: float = 1., | |
| a: float = -2., | |
| b: float = 2.) -> Tensor: | |
| r"""Fills the input Tensor with values drawn from a truncated | |
| normal distribution. The values are effectively drawn from the | |
| normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
| with values outside :math:`[a, b]` redrawn until they are within | |
| the bounds. The method used for generating the random values works | |
| best when :math:`a \leq \text{mean} \leq b`. | |
| Modified from | |
| https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py | |
| Args: | |
| tensor (``torch.Tensor``): an n-dimensional `torch.Tensor`. | |
| mean (float): the mean of the normal distribution. | |
| std (float): the standard deviation of the normal distribution. | |
| a (float): the minimum cutoff value. | |
| b (float): the maximum cutoff value. | |
| """ | |
| return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |