Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import logging | |
| import torch.nn as nn | |
| import torch.utils.checkpoint as cp | |
| from .utils import constant_init, kaiming_init | |
| def conv3x3(in_planes, out_planes, stride=1, dilation=1): | |
| """3x3 convolution with padding.""" | |
| return nn.Conv2d( | |
| in_planes, | |
| out_planes, | |
| kernel_size=3, | |
| stride=stride, | |
| padding=dilation, | |
| dilation=dilation, | |
| bias=False) | |
| class BasicBlock(nn.Module): | |
| expansion = 1 | |
| def __init__(self, | |
| inplanes, | |
| planes, | |
| stride=1, | |
| dilation=1, | |
| downsample=None, | |
| style='pytorch', | |
| with_cp=False): | |
| super(BasicBlock, self).__init__() | |
| assert style in ['pytorch', 'caffe'] | |
| self.conv1 = conv3x3(inplanes, planes, stride, dilation) | |
| self.bn1 = nn.BatchNorm2d(planes) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.conv2 = conv3x3(planes, planes) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.downsample = downsample | |
| self.stride = stride | |
| self.dilation = dilation | |
| assert not with_cp | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class Bottleneck(nn.Module): | |
| expansion = 4 | |
| def __init__(self, | |
| inplanes, | |
| planes, | |
| stride=1, | |
| dilation=1, | |
| downsample=None, | |
| style='pytorch', | |
| with_cp=False): | |
| """Bottleneck block. | |
| If style is "pytorch", the stride-two layer is the 3x3 conv layer, if | |
| it is "caffe", the stride-two layer is the first 1x1 conv layer. | |
| """ | |
| super(Bottleneck, self).__init__() | |
| assert style in ['pytorch', 'caffe'] | |
| if style == 'pytorch': | |
| conv1_stride = 1 | |
| conv2_stride = stride | |
| else: | |
| conv1_stride = stride | |
| conv2_stride = 1 | |
| self.conv1 = nn.Conv2d( | |
| inplanes, planes, kernel_size=1, stride=conv1_stride, bias=False) | |
| self.conv2 = nn.Conv2d( | |
| planes, | |
| planes, | |
| kernel_size=3, | |
| stride=conv2_stride, | |
| padding=dilation, | |
| dilation=dilation, | |
| bias=False) | |
| self.bn1 = nn.BatchNorm2d(planes) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.conv3 = nn.Conv2d( | |
| planes, planes * self.expansion, kernel_size=1, bias=False) | |
| self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| self.stride = stride | |
| self.dilation = dilation | |
| self.with_cp = with_cp | |
| def forward(self, x): | |
| def _inner_forward(x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| out = self.relu(out) | |
| return out | |
| def make_res_layer(block, | |
| inplanes, | |
| planes, | |
| blocks, | |
| stride=1, | |
| dilation=1, | |
| style='pytorch', | |
| with_cp=False): | |
| downsample = None | |
| if stride != 1 or inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d( | |
| inplanes, | |
| planes * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False), | |
| nn.BatchNorm2d(planes * block.expansion), | |
| ) | |
| layers = [] | |
| layers.append( | |
| block( | |
| inplanes, | |
| planes, | |
| stride, | |
| dilation, | |
| downsample, | |
| style=style, | |
| with_cp=with_cp)) | |
| inplanes = planes * block.expansion | |
| for _ in range(1, blocks): | |
| layers.append( | |
| block(inplanes, planes, 1, dilation, style=style, with_cp=with_cp)) | |
| return nn.Sequential(*layers) | |
| class ResNet(nn.Module): | |
| """ResNet backbone. | |
| Args: | |
| depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. | |
| num_stages (int): Resnet stages, normally 4. | |
| strides (Sequence[int]): Strides of the first block of each stage. | |
| dilations (Sequence[int]): Dilation of each stage. | |
| out_indices (Sequence[int]): Output from which stages. | |
| style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two | |
| layer is the 3x3 conv layer, otherwise the stride-two layer is | |
| the first 1x1 conv layer. | |
| frozen_stages (int): Stages to be frozen (all param fixed). -1 means | |
| not freezing any parameters. | |
| bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze | |
| running stats (mean and var). | |
| bn_frozen (bool): Whether to freeze weight and bias of BN layers. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. | |
| """ | |
| arch_settings = { | |
| 18: (BasicBlock, (2, 2, 2, 2)), | |
| 34: (BasicBlock, (3, 4, 6, 3)), | |
| 50: (Bottleneck, (3, 4, 6, 3)), | |
| 101: (Bottleneck, (3, 4, 23, 3)), | |
| 152: (Bottleneck, (3, 8, 36, 3)) | |
| } | |
| def __init__(self, | |
| depth, | |
| num_stages=4, | |
| strides=(1, 2, 2, 2), | |
| dilations=(1, 1, 1, 1), | |
| out_indices=(0, 1, 2, 3), | |
| style='pytorch', | |
| frozen_stages=-1, | |
| bn_eval=True, | |
| bn_frozen=False, | |
| with_cp=False): | |
| super(ResNet, self).__init__() | |
| if depth not in self.arch_settings: | |
| raise KeyError(f'invalid depth {depth} for resnet') | |
| assert num_stages >= 1 and num_stages <= 4 | |
| block, stage_blocks = self.arch_settings[depth] | |
| stage_blocks = stage_blocks[:num_stages] | |
| assert len(strides) == len(dilations) == num_stages | |
| assert max(out_indices) < num_stages | |
| self.out_indices = out_indices | |
| self.style = style | |
| self.frozen_stages = frozen_stages | |
| self.bn_eval = bn_eval | |
| self.bn_frozen = bn_frozen | |
| self.with_cp = with_cp | |
| self.inplanes = 64 | |
| self.conv1 = nn.Conv2d( | |
| 3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
| self.bn1 = nn.BatchNorm2d(64) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| self.res_layers = [] | |
| for i, num_blocks in enumerate(stage_blocks): | |
| stride = strides[i] | |
| dilation = dilations[i] | |
| planes = 64 * 2**i | |
| res_layer = make_res_layer( | |
| block, | |
| self.inplanes, | |
| planes, | |
| num_blocks, | |
| stride=stride, | |
| dilation=dilation, | |
| style=self.style, | |
| with_cp=with_cp) | |
| self.inplanes = planes * block.expansion | |
| layer_name = f'layer{i + 1}' | |
| self.add_module(layer_name, res_layer) | |
| self.res_layers.append(layer_name) | |
| self.feat_dim = block.expansion * 64 * 2**(len(stage_blocks) - 1) | |
| def init_weights(self, pretrained=None): | |
| if isinstance(pretrained, str): | |
| logger = logging.getLogger() | |
| from ..runner import load_checkpoint | |
| load_checkpoint(self, pretrained, strict=False, logger=logger) | |
| elif pretrained is None: | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| kaiming_init(m) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| constant_init(m, 1) | |
| else: | |
| raise TypeError('pretrained must be a str or None') | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| x = self.maxpool(x) | |
| outs = [] | |
| for i, layer_name in enumerate(self.res_layers): | |
| res_layer = getattr(self, layer_name) | |
| x = res_layer(x) | |
| if i in self.out_indices: | |
| outs.append(x) | |
| if len(outs) == 1: | |
| return outs[0] | |
| else: | |
| return tuple(outs) | |
| def train(self, mode=True): | |
| super(ResNet, self).train(mode) | |
| if self.bn_eval: | |
| for m in self.modules(): | |
| if isinstance(m, nn.BatchNorm2d): | |
| m.eval() | |
| if self.bn_frozen: | |
| for params in m.parameters(): | |
| params.requires_grad = False | |
| if mode and self.frozen_stages >= 0: | |
| for param in self.conv1.parameters(): | |
| param.requires_grad = False | |
| for param in self.bn1.parameters(): | |
| param.requires_grad = False | |
| self.bn1.eval() | |
| self.bn1.weight.requires_grad = False | |
| self.bn1.bias.requires_grad = False | |
| for i in range(1, self.frozen_stages + 1): | |
| mod = getattr(self, f'layer{i}') | |
| mod.eval() | |
| for param in mod.parameters(): | |
| param.requires_grad = False | |