File size: 35,765 Bytes
3aba902
 
182f943
3aba902
 
 
c4fce07
 
 
 
 
182f943
 
3aba902
 
 
 
 
c4fce07
 
5b2a969
c4fce07
 
 
 
3aba902
 
 
 
 
c4fce07
 
5b2a969
 
3aba902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2a969
c4fce07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2a969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4fce07
 
 
 
 
5b2a969
 
c4fce07
5b2a969
 
c4fce07
 
 
 
3aba902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4fce07
 
5b2a969
c4fce07
a5e3686
c4fce07
 
 
 
 
 
a5e3686
c4fce07
 
 
 
 
 
3aba902
5b2a969
 
 
 
 
 
 
a5e3686
3aba902
 
 
 
 
 
5b2a969
3aba902
 
 
 
c4fce07
 
5b2a969
 
c4fce07
 
 
 
5b2a969
3aba902
c4fce07
3aba902
 
c4fce07
 
3aba902
c4fce07
 
 
 
 
 
5b2a969
c4fce07
5b2a969
c4fce07
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2a969
c4fce07
 
 
 
3aba902
5b2a969
182f943
5b2a969
 
c4fce07
 
 
5b2a969
c4fce07
 
 
 
 
 
5b2a969
3aba902
 
 
5b2a969
a5e3686
3aba902
 
 
 
 
 
5b2a969
3aba902
 
 
 
c4fce07
 
5b2a969
 
 
c4fce07
5b2a969
c4fce07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182f943
 
5b2a969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4fce07
 
5b2a969
 
c4fce07
5b2a969
 
 
3aba902
c4fce07
 
5b2a969
c4fce07
 
 
 
 
3aba902
5b2a969
3aba902
 
 
5b2a969
a5e3686
3aba902
 
 
 
 
 
5b2a969
3aba902
 
c4fce07
 
5b2a969
3aba902
c4fce07
 
5b2a969
 
 
c4fce07
5b2a969
c4fce07
 
 
 
 
 
 
 
5b2a969
c4fce07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aba902
182f943
 
c4fce07
5b2a969
 
 
 
 
c4fce07
5b2a969
 
 
 
 
 
 
 
 
 
 
 
c4fce07
 
 
 
 
 
 
5b2a969
 
c4fce07
 
5b2a969
 
c4fce07
 
 
5b2a969
c4fce07
 
 
 
 
 
5b2a969
3aba902
 
 
5b2a969
a5e3686
3aba902
 
 
 
 
 
5b2a969
3aba902
 
 
5b2a969
3aba902
c4fce07
 
5b2a969
 
c4fce07
 
3aba902
 
c4fce07
 
3aba902
c4fce07
 
 
 
 
 
 
 
 
 
5b2a969
c4fce07
 
 
 
 
3aba902
5b2a969
3aba902
 
 
5b2a969
3aba902
182f943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aba902
 
 
 
 
 
 
 
 
 
 
5b2a969
3aba902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2a969
3aba902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2a969
 
3aba902
 
 
 
 
 
 
 
 
 
 
 
5b2a969
3aba902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2a969
 
3aba902
 
 
 
 
 
 
 
 
 
 
 
5b2a969
3aba902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2a969
3aba902
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
import os
import sys
import spaces
import gradio as gr
import torch
import argparse
from PIL import Image
import numpy as np
import torchvision.transforms as transforms
from moviepy.editor import VideoFileClip
from diffusers.utils import load_image, load_video
from tqdm import tqdm
from image_gen_aux import DepthPreprocessor

project_root = os.path.dirname(os.path.abspath(__file__))
os.environ["GRADIO_TEMP_DIR"] = os.path.join(project_root, "tmp", "gradio")
sys.path.append(project_root)

try:
    sys.path.append(os.path.join(project_root, "submodules/MoGe"))
    sys.path.append(os.path.join(project_root, "submodules/vggt"))
    os.environ["TOKENIZERS_PARALLELISM"] = "false"
except:
    print("Warning: MoGe not found, motion transfer will not be applied")

HERE_PATH = os.path.normpath(os.path.dirname(__file__))
sys.path.insert(0, HERE_PATH)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="EXCAI/Diffusion-As-Shader", filename='spatracker/spaT_final.pth', local_dir=f'{HERE_PATH}/checkpoints/')

from models.pipelines import DiffusionAsShaderPipeline, FirstFrameRepainter, CameraMotionGenerator, ObjectMotionGenerator
from submodules.MoGe.moge.model import MoGeModel
from submodules.vggt.vggt.utils.pose_enc import pose_encoding_to_extri_intri
from submodules.vggt.vggt.models.vggt import VGGT

# Parse command line arguments
parser = argparse.ArgumentParser(description="Diffusion as Shader Web UI")
parser.add_argument("--port", type=int, default=7860, help="Port to run the web UI on")
parser.add_argument("--share", action="store_true", help="Share the web UI")
parser.add_argument("--gpu", type=int, default=0, help="GPU device ID")
parser.add_argument("--model_path", type=str, default="EXCAI/Diffusion-As-Shader", help="Path to model checkpoint")
parser.add_argument("--output_dir", type=str, default="tmp", help="Output directory")
args = parser.parse_args()

# Use the original GPU ID throughout the entire code for consistency
GPU_ID = args.gpu
DEFAULT_MODEL_PATH = args.model_path
OUTPUT_DIR = args.output_dir

# Create necessary directories
os.makedirs("outputs", exist_ok=True)
# Create project tmp directory instead of using system temp
os.makedirs(os.path.join(project_root, "tmp"), exist_ok=True)
os.makedirs(os.path.join(project_root, "tmp", "gradio"), exist_ok=True)

def load_media(media_path, max_frames=49, transform=None):
    """Load video or image frames and convert to tensor
    
    Args:
        media_path (str): Path to video or image file
        max_frames (int): Maximum number of frames to load
        transform (callable): Transform to apply to frames
        
    Returns:
        Tuple[torch.Tensor, float, bool]: Video tensor [T,C,H,W], FPS, and is_video flag
    """
    if transform is None:
        transform = transforms.Compose([
            transforms.Resize((480, 720)),
            transforms.ToTensor()
        ])
    
    # Determine if input is video or image based on extension
    ext = os.path.splitext(media_path)[1].lower()
    is_video = ext in ['.mp4', '.avi', '.mov']
    
    if is_video:
        # Load video file info
        video_clip = VideoFileClip(media_path)
        duration = video_clip.duration
        original_fps = video_clip.fps
        
        # Case 1: Video longer than 6 seconds, sample first 6 seconds + 1 frame
        if duration > 6.0:
            sampling_fps = 8  # 8 frames per second
            frames = load_video(media_path, sampling_fps=sampling_fps, max_frames=max_frames)
            fps = sampling_fps
        # Cases 2 and 3: Video shorter than 6 seconds
        else:
            # Load all frames
            frames = load_video(media_path)
            
            # Case 2: Total frames less than max_frames, need interpolation
            if len(frames) < max_frames:
                fps = len(frames) / duration  # Keep original fps
                
                # Evenly interpolate to max_frames
                indices = np.linspace(0, len(frames) - 1, max_frames)
                new_frames = []
                for i in indices:
                    idx = int(i)
                    new_frames.append(frames[idx])
                frames = new_frames
            # Case 3: Total frames more than max_frames but video less than 6 seconds
            else:
                # Evenly sample to max_frames
                indices = np.linspace(0, len(frames) - 1, max_frames)
                new_frames = []
                for i in indices:
                    idx = int(i)
                    new_frames.append(frames[idx])
                frames = new_frames
                fps = max_frames / duration  # New fps to maintain duration
    else:
        # Handle image as single frame
        image = load_image(media_path)
        frames = [image]
        fps = 8  # Default fps for images
        
        # Duplicate frame to max_frames
        while len(frames) < max_frames:
            frames.append(frames[0].copy())
    
    # Convert frames to tensor
    video_tensor = torch.stack([transform(frame) for frame in frames])
    
    return video_tensor, fps, is_video

def save_uploaded_file(file):
    if file is None:
        return None
        
    # Use project tmp directory instead of system temp
    temp_dir = os.path.join(project_root, "tmp")
    
    if hasattr(file, 'name'):
        filename = file.name
    else:
        # Generate a unique filename if name attribute is missing
        import uuid
        ext = ".tmp"
        if hasattr(file, 'content_type'):
            if "image" in file.content_type:
                ext = ".png"
            elif "video" in file.content_type:
                ext = ".mp4"
        filename = f"{uuid.uuid4()}{ext}"
    
    temp_path = os.path.join(temp_dir, filename)
    
    try:
        # Check if file is a FileStorage object or already a path
        if hasattr(file, 'save'):
            file.save(temp_path)
        elif isinstance(file, str):
            # It's already a path
            return file
        else:
            # Try to read and save the file
            with open(temp_path, 'wb') as f:
                f.write(file.read() if hasattr(file, 'read') else file)
    except Exception as e:
        print(f"Error saving file: {e}")
        return None
        
    return temp_path

das_pipeline = None
moge_model = None
vggt_model = None

@spaces.GPU
def get_das_pipeline():
    global das_pipeline
    if das_pipeline is None:
        das_pipeline = DiffusionAsShaderPipeline(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
    return das_pipeline

@spaces.GPU
def get_moge_model():
    global moge_model
    if moge_model is None:
        das = get_das_pipeline()
        moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(das.device)
    return moge_model

@spaces.GPU
def get_vggt_model():
    global vggt_model
    if vggt_model is None:
        das = get_das_pipeline()
        vggt_model = VGGT.from_pretrained("facebook/VGGT-1B").to(das.device)
    return vggt_model

def process_motion_transfer(source, prompt, mt_repaint_option, mt_repaint_image):
    """Process video motion transfer task"""
    try:
        # Save uploaded files
        input_video_path = save_uploaded_file(source)
        if input_video_path is None:
            return None, None
        
        print(f"DEBUG: Repaint option: {mt_repaint_option}")
        print(f"DEBUG: Repaint image: {mt_repaint_image}")
        
        das = get_das_pipeline()
        video_tensor, fps, is_video = load_media(input_video_path)
        das.fps = fps  # 设置 das.fps 为 load_media 返回的 fps
        
        if not is_video:
            tracking_method = "moge"
            print("Image input detected, using MoGe for tracking video generation.")
        else:
            tracking_method = "cotracker"
        
        repaint_img_tensor = None
        if mt_repaint_image is not None:
            repaint_path = save_uploaded_file(mt_repaint_image)
            repaint_img_tensor, _, _ = load_media(repaint_path)
            repaint_img_tensor = repaint_img_tensor[0]
        elif mt_repaint_option == "Yes":
            repainter = FirstFrameRepainter(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
            repaint_img_tensor = repainter.repaint(
                video_tensor[0], 
                prompt=prompt,
                depth_path=None
            )
        
        tracking_tensor = None
        tracking_path = None
        if tracking_method == "moge":
            moge = get_moge_model()
            infer_result = moge.infer(video_tensor[0].to(das.device))  # [C, H, W] in range [0,1]
            H, W = infer_result["points"].shape[0:2]
            pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
            poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)

            pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
  
            cam_motion = CameraMotionGenerator(None)
            cam_motion.set_intr(infer_result["intrinsics"])
  
            pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]

            tracking_path, tracking_tensor = das.visualize_tracking_moge(
                pred_tracks.cpu().numpy(), 
                infer_result["mask"].cpu().numpy()
            )
            print('Export tracking video via MoGe')
        else:
            # 使用 cotracker
            pred_tracks, pred_visibility = generate_tracking_cotracker(video_tensor)
            tracking_path, tracking_tensor = das.visualize_tracking_cotracker(pred_tracks, pred_visibility)
            print('Export tracking video via cotracker')

        output_path = das.apply_tracking(
            video_tensor=video_tensor,
            fps=fps,  # 使用 load_media 返回的 fps
            tracking_tensor=tracking_tensor,
            img_cond_tensor=repaint_img_tensor,
            prompt=prompt,
            checkpoint_path=DEFAULT_MODEL_PATH
        )
        
        return tracking_path, output_path
    except Exception as e:
        import traceback
        print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
        return None, None

def process_camera_control(source, prompt, camera_motion, tracking_method):
    """Process camera control task"""
    try:
        # Save uploaded files
        input_media_path = save_uploaded_file(source)
        if input_media_path is None:
            return None, None
        
        print(f"DEBUG: Camera motion: '{camera_motion}'")
        print(f"DEBUG: Tracking method: '{tracking_method}'")
        
        das = get_das_pipeline()
        video_tensor, fps, is_video = load_media(input_media_path)
        das.fps = fps  # 设置 das.fps 为 load_media 返回的 fps
        
        if not is_video:
            tracking_method = "moge"
            print("Image input detected, switching to MoGe")

        cam_motion = CameraMotionGenerator(camera_motion)
        repaint_img_tensor = None
        tracking_tensor = None

        if tracking_method == "moge":
            moge = get_moge_model()
            
            infer_result = moge.infer(video_tensor[0].to(das.device))  # [C, H, W] in range [0,1]
            H, W = infer_result["points"].shape[0:2]
            pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
            cam_motion.set_intr(infer_result["intrinsics"])

            if camera_motion:
                poses = cam_motion.get_default_motion() # shape: [49, 4, 4]
                print("Camera motion applied")
            else:
                poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)

            pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
            pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]

            _, tracking_tensor = das.visualize_tracking_moge(
                pred_tracks.cpu().numpy(), 
                infer_result["mask"].cpu().numpy()
            )
            print('Export tracking video via MoGe')
        else:
            # 使用在CPU上运行的cotracker
            pred_tracks, pred_visibility = generate_tracking_cotracker(video_tensor)
            
            t, c, h, w = video_tensor.shape
            new_width = 518
            new_height = round(h * (new_width / w) / 14) * 14
            resize_transform = transforms.Resize((new_height, new_width), interpolation=Image.BICUBIC)
            video_vggt = resize_transform(video_tensor)  # [T, C, H, W]
            
            if new_height > 518:
                start_y = (new_height - 518) // 2
                video_vggt = video_vggt[:, :, start_y:start_y + 518, :]

            vggt_model = get_vggt_model()

            with torch.no_grad():
                with torch.cuda.amp.autocast(dtype=das.dtype):
                    video_vggt = video_vggt.unsqueeze(0)  # [1, T, C, H, W]
                    aggregated_tokens_list, ps_idx = vggt_model.aggregator(video_vggt.to(das.device))
                
                    extr, intr = pose_encoding_to_extri_intri(vggt_model.camera_head(aggregated_tokens_list)[-1], video_vggt.shape[-2:])
            
            cam_motion.set_intr(intr)
            cam_motion.set_extr(extr)

            if camera_motion:
                poses = cam_motion.get_default_motion() # shape: [49, 4, 4]
                pred_tracks_world = cam_motion.s2w_vggt(pred_tracks, extr, intr)
                pred_tracks = cam_motion.w2s_vggt(pred_tracks_world, extr, intr, poses) # [T, N, 3]
                print("Camera motion applied")
            
            tracking_path, tracking_tensor = das.visualize_tracking_cotracker(pred_tracks, None)
            print('Export tracking video via cotracker')
        
        output_path = das.apply_tracking(
            video_tensor=video_tensor,
            fps=fps,  # 使用 load_media 返回的 fps
            tracking_tensor=tracking_tensor,
            img_cond_tensor=repaint_img_tensor,
            prompt=prompt,
            checkpoint_path=DEFAULT_MODEL_PATH
        )
        
        return tracking_path, output_path
    except Exception as e:
        import traceback
        print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
        return None, None

def process_object_manipulation(source, prompt, object_motion, object_mask, tracking_method):
    """Process object manipulation task"""
    try:
        # Save uploaded files
        input_image_path = save_uploaded_file(source)
        if input_image_path is None:
            return None, None
            
        object_mask_path = save_uploaded_file(object_mask)
        if object_mask_path is None:
            print("Object mask not provided")
            return None, None
        
        das = get_das_pipeline()
        video_tensor, fps, is_video = load_media(input_image_path)
        das.fps = fps  # 设置 das.fps 为 load_media 返回的 fps
        
        if not is_video:
            tracking_method = "moge"
            print("Image input detected, switching to MoGe")

        mask_image = Image.open(object_mask_path).convert('L')
        mask_image = transforms.Resize((480, 720))(mask_image)
        mask = torch.from_numpy(np.array(mask_image) > 127)

        motion_generator = ObjectMotionGenerator(device=das.device)
        repaint_img_tensor = None
        tracking_tensor = None
        
        if tracking_method == "moge":
            moge = get_moge_model()
            
            infer_result = moge.infer(video_tensor[0].to(das.device))  # [C, H, W] in range [0,1]
            H, W = infer_result["points"].shape[0:2]
            pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]

            pred_tracks = motion_generator.apply_motion(
                pred_tracks=pred_tracks,
                mask=mask,
                motion_type=object_motion,
                distance=50,
                num_frames=49,
                tracking_method="moge"
            )
            print(f"Object motion '{object_motion}' applied using provided mask")
            poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)
            pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
            
            cam_motion = CameraMotionGenerator(None)
            cam_motion.set_intr(infer_result["intrinsics"])
            pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]

            _, tracking_tensor = das.visualize_tracking_moge(
                pred_tracks.cpu().numpy(), 
                infer_result["mask"].cpu().numpy()
            )
            print('Export tracking video via MoGe')
        else:
            # 使用在CPU上运行的cotracker
            pred_tracks, pred_visibility = generate_tracking_cotracker(video_tensor)
            
            t, c, h, w = video_tensor.shape
            new_width = 518
            new_height = round(h * (new_width / w) / 14) * 14
            resize_transform = transforms.Resize((new_height, new_width), interpolation=Image.BICUBIC)
            video_vggt = resize_transform(video_tensor)  # [T, C, H, W]
            
            if new_height > 518:
                start_y = (new_height - 518) // 2
                video_vggt = video_vggt[:, :, start_y:start_y + 518, :]

            vggt_model = get_vggt_model()

            with torch.no_grad():
                with torch.cuda.amp.autocast(dtype=das.dtype):
                    video_vggt = video_vggt.unsqueeze(0)  # [1, T, C, H, W]
                    aggregated_tokens_list, ps_idx = vggt_model.aggregator(video_vggt.to(das.device))
                
                    extr, intr = pose_encoding_to_extri_intri(vggt_model.camera_head(aggregated_tokens_list)[-1], video_vggt.shape[-2:])
            
            pred_tracks = motion_generator.apply_motion(
                pred_tracks=pred_tracks.squeeze(),
                mask=mask,
                motion_type=object_motion,
                distance=50,
                num_frames=49,
                tracking_method="cotracker"
            )
            print(f"Object motion '{object_motion}' applied using provided mask")
            
            tracking_path, tracking_tensor = das.visualize_tracking_cotracker(pred_tracks.unsqueeze(0), None)
            print('Export tracking video via cotracker')
        
        output_path = das.apply_tracking(
            video_tensor=video_tensor,
            fps=fps,  # 使用 load_media 返回的 fps
            tracking_tensor=tracking_tensor,
            img_cond_tensor=repaint_img_tensor,
            prompt=prompt,
            checkpoint_path=DEFAULT_MODEL_PATH
        )
        
        return tracking_path, output_path
    except Exception as e:
        import traceback
        print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
        return None, None

def process_mesh_animation(source, prompt, tracking_video, ma_repaint_option, ma_repaint_image):
    """Process mesh animation task"""
    try:
        # Save uploaded files
        input_video_path = save_uploaded_file(source)
        if input_video_path is None:
            return None, None
            
        tracking_video_path = save_uploaded_file(tracking_video)
        if tracking_video_path is None:
            return None, None
        
        das = get_das_pipeline()   
        video_tensor, fps, is_video = load_media(input_video_path)
        das.fps = fps  # 设置 das.fps 为 load_media 返回的 fps
        
        tracking_tensor, tracking_fps, _ = load_media(tracking_video_path)
        repaint_img_tensor = None
        if ma_repaint_image is not None:
            repaint_path = save_uploaded_file(ma_repaint_image)
            repaint_img_tensor, _, _ = load_media(repaint_path)
            repaint_img_tensor = repaint_img_tensor[0]  # 获取第一帧
        elif ma_repaint_option == "Yes":

            repainter = FirstFrameRepainter(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
            repaint_img_tensor = repainter.repaint(
                video_tensor[0], 
                prompt=prompt,
                depth_path=None
            )

        output_path = das.apply_tracking(
            video_tensor=video_tensor,
            fps=fps,  # 使用 load_media 返回的 fps
            tracking_tensor=tracking_tensor,
            img_cond_tensor=repaint_img_tensor,
            prompt=prompt,
            checkpoint_path=DEFAULT_MODEL_PATH
        )
        
        return tracking_video_path, output_path
    except Exception as e:
        import traceback
        print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
        return None, None

def generate_tracking_cotracker(video_tensor, density=30):
    """在CPU上生成跟踪视频,只使用第一帧的深度信息,使用矩阵运算提高效率
    
    参数:
        video_tensor (torch.Tensor): 输入视频张量
        density (int): 跟踪点的密度
        
    返回:
        tuple: (pred_tracks, pred_visibility)
    """
    cotracker = torch.hub.load("facebookresearch/co-tracker", "cotracker3_offline").to("cpu")
    depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti").to("cpu")
    
    video = video_tensor.unsqueeze(0).to("cpu")
    
    # 只处理第一帧以获取深度图
    print("estimating depth for first frame...")
    frame = (video_tensor[0].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
    depth = depth_preprocessor(Image.fromarray(frame))[0]
    depth_tensor = transforms.ToTensor()(depth)  # [1, H, W]
    
    # 获取跟踪点和可见性
    print("tracking on CPU...")
    pred_tracks, pred_visibility = cotracker(video, grid_size=density)  # B T N 2,  B T N 1
    
    # 提取维度
    B, T, N, _ = pred_tracks.shape
    H, W = depth_tensor.shape[1], depth_tensor.shape[2]
    
    # 创建带深度的输出张量
    pred_tracks_with_depth = torch.zeros((B, T, N, 3), device="cpu")
    pred_tracks_with_depth[:, :, :, :2] = pred_tracks  # 复制x,y坐标
    
    # 使用矩阵运算一次性处理所有帧和点
    # 重塑pred_tracks为[B*T*N, 2]以便于处理
    flat_tracks = pred_tracks.reshape(-1, 2)
    
    # 将坐标限制在有效图像边界内
    x_coords = flat_tracks[:, 0].clamp(0, W-1).long()
    y_coords = flat_tracks[:, 1].clamp(0, H-1).long()
    
    # 从第一帧的深度图获取所有点的深度值
    depths = depth_tensor[0, y_coords, x_coords]
    
    # 重塑回原始形状并分配给输出张量
    pred_tracks_with_depth[:, :, :, 2] = depths.reshape(B, T, N)

    del cotracker,depth_preprocessor
    
    # 将结果返回
    return pred_tracks_with_depth.squeeze(0), pred_visibility.squeeze(0)

# Create Gradio interface with updated layout
with gr.Blocks(title="Diffusion as Shader") as demo:
    gr.Markdown("# Diffusion as Shader Web UI")
    gr.Markdown("### [Project Page](https://igl-hkust.github.io/das/) | [GitHub](https://github.com/IGL-HKUST/DiffusionAsShader)")
    
    with gr.Row():
        left_column = gr.Column(scale=1)
        right_column = gr.Column(scale=1)

    with right_column:
        output_video = gr.Video(label="Generated Video")
        tracking_video = gr.Video(label="Tracking Video")

    with left_column:
        source = gr.File(label="Source", file_types=["image", "video"])
        common_prompt = gr.Textbox(label="Prompt", lines=2)
        gr.Markdown(f"**Using GPU: {GPU_ID}**")
        
        with gr.Tabs() as task_tabs:
            # Motion Transfer tab
            with gr.TabItem("Motion Transfer"):
                gr.Markdown("## Motion Transfer")
                
                # Simplified controls - Radio buttons for Yes/No and separate file upload
                with gr.Row():
                    mt_repaint_option = gr.Radio(
                        label="Repaint First Frame",
                        choices=["No", "Yes"],
                        value="No"
                    )
                gr.Markdown("### Note: If you want to use your own image as repainted first frame, please upload the image in below.")
                # Custom image uploader (always visible)
                mt_repaint_image = gr.File(
                    label="Custom Repaint Image", 
                    file_types=["image"]
                )
                
                # Add run button for Motion Transfer tab
                mt_run_btn = gr.Button("Run Motion Transfer", variant="primary", size="lg")
                
                # Connect to process function
                mt_run_btn.click(
                    fn=process_motion_transfer,
                    inputs=[
                        source, common_prompt,
                        mt_repaint_option, mt_repaint_image
                    ],
                    outputs=[tracking_video, output_video]
                )
            
            # Camera Control tab
            with gr.TabItem("Camera Control"):
                gr.Markdown("## Camera Control")
                
                cc_camera_motion = gr.Textbox(
                    label="Current Camera Motion Sequence",
                    placeholder="Your camera motion sequence will appear here...",
                    interactive=False
                )
                
                # Use tabs for different motion types
                with gr.Tabs() as cc_motion_tabs:
                    # Translation tab
                    with gr.TabItem("Translation (trans)"):
                        with gr.Row():
                            cc_trans_x = gr.Slider(minimum=-1.0, maximum=1.0, value=0.0, step=0.05, label="X-axis Movement")
                            cc_trans_y = gr.Slider(minimum=-1.0, maximum=1.0, value=0.0, step=0.05, label="Y-axis Movement")
                            cc_trans_z = gr.Slider(minimum=-1.0, maximum=1.0, value=0.0, step=0.05, label="Z-axis Movement (depth)")
                        
                        with gr.Row():
                            cc_trans_start = gr.Number(minimum=0, maximum=48, value=0, step=1, label="Start Frame", precision=0)
                            cc_trans_end = gr.Number(minimum=0, maximum=48, value=48, step=1, label="End Frame", precision=0)
                        
                        cc_trans_note = gr.Markdown("""
                        **Translation Notes:**
                        - Positive X: Move right, Negative X: Move left
                        - Positive Y: Move down, Negative Y: Move up
                        - Positive Z: Zoom in, Negative Z: Zoom out
                        """)
                        
                        # Add translation button in the Translation tab
                        cc_add_trans = gr.Button("Add Camera Translation", variant="secondary")
                        
                        # Function to add translation motion
                        def add_translation_motion(current_motion, trans_x, trans_y, trans_z, trans_start, trans_end):
                            # Format: trans dx dy dz [start_frame end_frame]
                            frame_range = f" {int(trans_start)} {int(trans_end)}" if trans_start != 0 or trans_end != 48 else ""
                            new_motion = f"trans {trans_x:.2f} {trans_y:.2f} {trans_z:.2f}{frame_range}"
                            
                            # Append to existing motion string with semicolon separator if needed
                            if current_motion and current_motion.strip():
                                updated_motion = f"{current_motion}; {new_motion}"
                            else:
                                updated_motion = new_motion
                            
                            return updated_motion
                        
                        # Connect translation button
                        cc_add_trans.click(
                            fn=add_translation_motion,
                            inputs=[
                                cc_camera_motion,
                                cc_trans_x, cc_trans_y, cc_trans_z, cc_trans_start, cc_trans_end
                            ],
                            outputs=[cc_camera_motion]
                        )
                    
                    # Rotation tab
                    with gr.TabItem("Rotation (rot)"):
                        with gr.Row():
                            cc_rot_axis = gr.Dropdown(choices=["x", "y", "z"], value="y", label="Rotation Axis")
                            cc_rot_angle = gr.Slider(minimum=-30, maximum=30, value=5, step=1, label="Rotation Angle (degrees)")
                        
                        with gr.Row():
                            cc_rot_start = gr.Number(minimum=0, maximum=48, value=0, step=1, label="Start Frame", precision=0)
                            cc_rot_end = gr.Number(minimum=0, maximum=48, value=48, step=1, label="End Frame", precision=0)
                        
                        cc_rot_note = gr.Markdown("""
                        **Rotation Notes:**
                        - X-axis rotation: Tilt camera up/down
                        - Y-axis rotation: Pan camera left/right
                        - Z-axis rotation: Roll camera
                        """)
                        
                        # Add rotation button in the Rotation tab
                        cc_add_rot = gr.Button("Add Camera Rotation", variant="secondary")
                        
                        # Function to add rotation motion
                        def add_rotation_motion(current_motion, rot_axis, rot_angle, rot_start, rot_end):
                            # Format: rot axis angle [start_frame end_frame]
                            frame_range = f" {int(rot_start)} {int(rot_end)}" if rot_start != 0 or rot_end != 48 else ""
                            new_motion = f"rot {rot_axis} {rot_angle}{frame_range}"
                            
                            # Append to existing motion string with semicolon separator if needed
                            if current_motion and current_motion.strip():
                                updated_motion = f"{current_motion}; {new_motion}"
                            else:
                                updated_motion = new_motion
                            
                            return updated_motion
                        
                        # Connect rotation button
                        cc_add_rot.click(
                            fn=add_rotation_motion,
                            inputs=[
                                cc_camera_motion,
                                cc_rot_axis, cc_rot_angle, cc_rot_start, cc_rot_end
                            ],
                            outputs=[cc_camera_motion]
                        )
                
                # Add a clear button to reset the motion sequence
                cc_clear_motion = gr.Button("Clear All Motions", variant="stop")
                
                def clear_camera_motion():
                    return ""
                
                cc_clear_motion.click(
                    fn=clear_camera_motion,
                    inputs=[],
                    outputs=[cc_camera_motion]
                )

                cc_tracking_method = gr.Radio(
                    label="Tracking Method",
                    choices=["moge", "cotracker"],
                    value="cotracker"
                )
                
                # Add run button for Camera Control tab
                cc_run_btn = gr.Button("Run Camera Control", variant="primary", size="lg")
                
                # Connect to process function
                cc_run_btn.click(
                    fn=process_camera_control,
                    inputs=[
                        source, common_prompt,
                        cc_camera_motion, cc_tracking_method
                    ],
                    outputs=[tracking_video, output_video]
                )
            
            # Object Manipulation tab
            with gr.TabItem("Object Manipulation"):
                gr.Markdown("## Object Manipulation")
                om_object_mask = gr.File(
                    label="Object Mask Image", 
                    file_types=["image"]
                )
                gr.Markdown("Upload a binary mask image, white areas indicate the object to manipulate")
                om_object_motion = gr.Dropdown(
                    label="Object Motion Type",
                    choices=["up", "down", "left", "right", "front", "back", "rot"],
                    value="up"
                )
                om_tracking_method = gr.Radio(
                    label="Tracking Method",
                    choices=["moge", "cotracker"],
                    value="cotracker"
                )
                
                # Add run button for Object Manipulation tab
                om_run_btn = gr.Button("Run Object Manipulation", variant="primary", size="lg")
                
                # Connect to process function
                om_run_btn.click(
                    fn=process_object_manipulation,
                    inputs=[
                        source, common_prompt,
                        om_object_motion, om_object_mask, om_tracking_method
                    ],
                    outputs=[tracking_video, output_video]
                )
            
            # Animating meshes to video tab
            with gr.TabItem("Animating meshes to video"):
                gr.Markdown("## Mesh Animation to Video")
                gr.Markdown("""
                    Note: Currently only supports tracking videos generated with Blender (version > 4.0).
                    Please run the script `scripts/blender.py` in your Blender project to generate tracking videos.
                """)
                ma_tracking_video = gr.File(
                    label="Tracking Video",
                    file_types=["video"]
                )
                gr.Markdown("Tracking video needs to be generated from Blender")
                
                # Simplified controls - Radio buttons for Yes/No and separate file upload
                with gr.Row():
                    ma_repaint_option = gr.Radio(
                        label="Repaint First Frame",
                        choices=["No", "Yes"],
                        value="No"
                    )
                gr.Markdown("### Note: If you want to use your own image as repainted first frame, please upload the image in below.")
                # Custom image uploader (always visible)
                ma_repaint_image = gr.File(
                    label="Custom Repaint Image", 
                    file_types=["image"]
                )
                
                # Add run button for Mesh Animation tab
                ma_run_btn = gr.Button("Run Mesh Animation", variant="primary", size="lg")
                
                # Connect to process function
                ma_run_btn.click(
                    fn=process_mesh_animation,
                    inputs=[
                        source, common_prompt,
                        ma_tracking_video, ma_repaint_option, ma_repaint_image
                    ],
                    outputs=[tracking_video, output_video]
                )

# Launch interface
if __name__ == "__main__":
    print(f"Using GPU: {GPU_ID}")
    print(f"Web UI will start on port {args.port}")
    if args.share:
        print("Creating public link for remote access")
    
    # Launch interface
    demo.launch(share=args.share, server_port=args.port)