Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,825 Bytes
3aba902 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
from pathlib import Path
import sys
sys.path.append(str(Path(__file__).absolute().parents[1]))
from typing import *
import itertools
import json
import warnings
import cv2
import numpy as np
from numpy import ndarray
import torch
from PIL import Image
from tqdm import tqdm, trange
import trimesh
import trimesh.visual
import click
from scipy.sparse import csr_array, hstack, vstack
from scipy.ndimage import convolve
from scipy.sparse.linalg import lsmr
from moge.model import MoGeModel
from moge.utils.io import save_glb, save_ply
from moge.utils.vis import colorize_depth
import utils3d
def get_panorama_cameras():
vertices, _ = utils3d.numpy.icosahedron()
intrinsics = utils3d.numpy.intrinsics_from_fov(fov_x=np.deg2rad(90), fov_y=np.deg2rad(90))
extrinsics = utils3d.numpy.extrinsics_look_at([0, 0, 0], vertices, [0, 0, 1]).astype(np.float32)
return extrinsics, [intrinsics] * len(vertices)
def spherical_uv_to_directions(uv: np.ndarray):
theta, phi = (1 - uv[..., 0]) * (2 * np.pi), uv[..., 1] * np.pi
directions = np.stack([np.sin(phi) * np.cos(theta), np.sin(phi) * np.sin(theta), np.cos(phi)], axis=-1)
return directions
def directions_to_spherical_uv(directions: np.ndarray):
directions = directions / np.linalg.norm(directions, axis=-1, keepdims=True)
u = 1 - np.arctan2(directions[..., 1], directions[..., 0]) / (2 * np.pi) % 1.0
v = np.arccos(directions[..., 2]) / np.pi
return np.stack([u, v], axis=-1)
def split_panorama_image(image: np.ndarray, extrinsics: np.ndarray, intrinsics: np.ndarray, resolution: int):
height, width = image.shape[:2]
uv = utils3d.numpy.image_uv(width=resolution, height=resolution)
splitted_images = []
for i in range(len(extrinsics)):
spherical_uv = directions_to_spherical_uv(utils3d.numpy.unproject_cv(uv, extrinsics=extrinsics[i], intrinsics=intrinsics[i]))
pixels = utils3d.numpy.uv_to_pixel(spherical_uv, width=width, height=height).astype(np.float32)
splitted_image = cv2.remap(image, pixels[..., 0], pixels[..., 1], interpolation=cv2.INTER_LINEAR)
splitted_images.append(splitted_image)
return splitted_images
def poisson_equation(width: int, height: int, wrap_x: bool = False, wrap_y: bool = False) -> Tuple[csr_array, ndarray]:
grid_index = np.arange(height * width).reshape(height, width)
grid_index = np.pad(grid_index, ((0, 0), (1, 1)), mode='wrap' if wrap_x else 'edge')
grid_index = np.pad(grid_index, ((1, 1), (0, 0)), mode='wrap' if wrap_y else 'edge')
data = np.array([[-4, 1, 1, 1, 1]], dtype=np.float32).repeat(height * width, axis=0).reshape(-1)
indices = np.stack([
grid_index[1:-1, 1:-1],
grid_index[:-2, 1:-1], # up
grid_index[2:, 1:-1], # down
grid_index[1:-1, :-2], # left
grid_index[1:-1, 2:] # right
], axis=-1).reshape(-1)
indptr = np.arange(0, height * width * 5 + 1, 5)
A = csr_array((data, indices, indptr), shape=(height * width, height * width))
return A
def grad_equation(width: int, height: int, wrap_x: bool = False, wrap_y: bool = False) -> Tuple[csr_array, np.ndarray]:
grid_index = np.arange(width * height).reshape(height, width)
if wrap_x:
grid_index = np.pad(grid_index, ((0, 0), (0, 1)), mode='wrap')
if wrap_y:
grid_index = np.pad(grid_index, ((0, 1), (0, 0)), mode='wrap')
data = np.concatenate([
np.concatenate([
np.ones((grid_index.shape[0], grid_index.shape[1] - 1), dtype=np.float32).reshape(-1, 1), # x[i,j]
-np.ones((grid_index.shape[0], grid_index.shape[1] - 1), dtype=np.float32).reshape(-1, 1), # x[i,j-1]
], axis=1).reshape(-1),
np.concatenate([
np.ones((grid_index.shape[0] - 1, grid_index.shape[1]), dtype=np.float32).reshape(-1, 1), # x[i,j]
-np.ones((grid_index.shape[0] - 1, grid_index.shape[1]), dtype=np.float32).reshape(-1, 1), # x[i-1,j]
], axis=1).reshape(-1),
])
indices = np.concatenate([
np.concatenate([
grid_index[:, :-1].reshape(-1, 1),
grid_index[:, 1:].reshape(-1, 1),
], axis=1).reshape(-1),
np.concatenate([
grid_index[:-1, :].reshape(-1, 1),
grid_index[1:, :].reshape(-1, 1),
], axis=1).reshape(-1),
])
indptr = np.arange(0, grid_index.shape[0] * (grid_index.shape[1] - 1) * 2 + (grid_index.shape[0] - 1) * grid_index.shape[1] * 2 + 1, 2)
A = csr_array((data, indices, indptr), shape=(grid_index.shape[0] * (grid_index.shape[1] - 1) + (grid_index.shape[0] - 1) * grid_index.shape[1], height * width))
return A
def merge_panorama_depth(width: int, height: int, distance_maps: List[np.ndarray], pred_masks: List[np.ndarray], extrinsics: List[np.ndarray], intrinsics: List[np.ndarray]):
if max(width, height) > 256:
panorama_depth_init, _ = merge_panorama_depth(width // 2, height // 2, distance_maps, pred_masks, extrinsics, intrinsics)
panorama_depth_init = cv2.resize(panorama_depth_init, (width, height), cv2.INTER_LINEAR)
else:
panorama_depth_init = None
uv = utils3d.numpy.image_uv(width=width, height=height)
spherical_directions = spherical_uv_to_directions(uv)
# Warp each view to the panorama
panorama_log_distance_grad_maps, panorama_grad_masks = [], []
panorama_log_distance_laplacian_maps, panorama_laplacian_masks = [], []
panorama_pred_masks = []
for i in range(len(distance_maps)):
projected_uv, projected_depth = utils3d.numpy.project_cv(spherical_directions, extrinsics=extrinsics[i], intrinsics=intrinsics[i])
projection_valid_mask = (projected_depth > 0) & (projected_uv > 0).all(axis=-1) & (projected_uv < 1).all(axis=-1)
projected_pixels = utils3d.numpy.uv_to_pixel(np.clip(projected_uv, 0, 1), width=distance_maps[i].shape[1], height=distance_maps[i].shape[0]).astype(np.float32)
log_splitted_distance = np.log(distance_maps[i])
panorama_log_distance_map = np.where(projection_valid_mask, cv2.remap(log_splitted_distance, projected_pixels[..., 0], projected_pixels[..., 1], cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE), 0)
panorama_pred_mask = projection_valid_mask & (cv2.remap(pred_masks[i].astype(np.uint8), projected_pixels[..., 0], projected_pixels[..., 1], cv2.INTER_NEAREST, borderMode=cv2.BORDER_REPLICATE) > 0)
# calculate gradient map
padded = np.pad(panorama_log_distance_map, ((0, 0), (0, 1)), mode='wrap')
grad_x, grad_y = padded[:, :-1] - padded[:, 1:], padded[:-1, :] - padded[1:, :]
padded = np.pad(panorama_pred_mask, ((0, 0), (0, 1)), mode='wrap')
mask_x, mask_y = padded[:, :-1] & padded[:, 1:], padded[:-1, :] & padded[1:, :]
panorama_log_distance_grad_maps.append((grad_x, grad_y))
panorama_grad_masks.append((mask_x, mask_y))
# calculate laplacian map
padded = np.pad(panorama_log_distance_map, ((1, 1), (0, 0)), mode='edge')
padded = np.pad(padded, ((0, 0), (1, 1)), mode='wrap')
laplacian = convolve(padded, np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=np.float32))[1:-1, 1:-1]
padded = np.pad(panorama_pred_mask, ((1, 1), (0, 0)), mode='edge')
padded = np.pad(padded, ((0, 0), (1, 1)), mode='wrap')
mask = convolve(padded.astype(np.uint8), np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=np.uint8))[1:-1, 1:-1] == 5
panorama_log_distance_laplacian_maps.append(laplacian)
panorama_laplacian_masks.append(mask)
panorama_pred_masks.append(panorama_pred_mask)
panorama_log_distance_grad_x = np.stack([grad_map[0] for grad_map in panorama_log_distance_grad_maps], axis=0)
panorama_log_distance_grad_y = np.stack([grad_map[1] for grad_map in panorama_log_distance_grad_maps], axis=0)
panorama_grad_mask_x = np.stack([mask_map[0] for mask_map in panorama_grad_masks], axis=0)
panorama_grad_mask_y = np.stack([mask_map[1] for mask_map in panorama_grad_masks], axis=0)
panorama_log_distance_grad_x = np.sum(panorama_log_distance_grad_x * panorama_grad_mask_x, axis=0) / np.sum(panorama_grad_mask_x, axis=0).clip(1e-3)
panorama_log_distance_grad_y = np.sum(panorama_log_distance_grad_y * panorama_grad_mask_y, axis=0) / np.sum(panorama_grad_mask_y, axis=0).clip(1e-3)
panorama_laplacian_maps = np.stack(panorama_log_distance_laplacian_maps, axis=0)
panorama_laplacian_masks = np.stack(panorama_laplacian_masks, axis=0)
panorama_laplacian_map = np.sum(panorama_laplacian_maps * panorama_laplacian_masks, axis=0) / np.sum(panorama_laplacian_masks, axis=0).clip(1e-3)
grad_x_mask = np.any(panorama_grad_mask_x, axis=0).reshape(-1)
grad_y_mask = np.any(panorama_grad_mask_y, axis=0).reshape(-1)
grad_mask = np.concatenate([grad_x_mask, grad_y_mask])
laplacian_mask = np.any(panorama_laplacian_masks, axis=0).reshape(-1)
# Solve overdetermined system
A = vstack([
grad_equation(width, height, wrap_x=True, wrap_y=False)[grad_mask],
poisson_equation(width, height, wrap_x=True, wrap_y=False)[laplacian_mask],
])
b = np.concatenate([
panorama_log_distance_grad_x.reshape(-1)[grad_x_mask],
panorama_log_distance_grad_y.reshape(-1)[grad_y_mask],
panorama_laplacian_map.reshape(-1)[laplacian_mask]
])
x, *_ = lsmr(
A, b,
atol=1e-5, btol=1e-5,
x0=np.log(panorama_depth_init).reshape(-1) if panorama_depth_init is not None else None,
show=False,
)
panorama_depth = np.exp(x).reshape(height, width).astype(np.float32)
panorama_mask = np.any(panorama_pred_masks, axis=0)
return panorama_depth, panorama_mask
@click.command(help='Inference script for the MoGe model.')
@click.option('--input', 'input_path', type=click.Path(exists=True), help='Input image or folder path. "jpg" and "png" are supported.')
@click.option('--output', 'output_path', type=click.Path(), help='Output folder path')
@click.option('--pretrained', 'pretrained_model_name_or_path', type=str, default='Ruicheng/moge-vitl', help='Pretrained model name or path. Default is "Ruicheng/moge-vitl"')
@click.option('--device', 'device_name', type=str, default='cuda', help='Device name (e.g. "cuda", "cuda:0", "cpu"). Default is "cuda"')
@click.option('--resize', 'resize_to', type=int, default=None, help='Resize the image(s) & output maps to a specific size. Default is None (no resizing).')
@click.option('--resolution_level', type=int, default=9, help='An integer [0-9] for the resolution level of inference. The higher, the better but slower. Default is 9. Note that it is irrelevant to the output resolution.')
@click.option('--threshold', type=float, default=0.03, help='Threshold for removing edges. Default is 0.03. Smaller value removes more edges. "inf" means no thresholding.')
@click.option('--batch_size', type=int, default=4, help='Batch size for inference. Default is 4.')
@click.option('--splitted', 'save_splitted', is_flag=True, help='Whether to save the splitted images. Default is False.')
@click.option('--maps', 'save_maps_', is_flag=True, help='Whether to save the output maps and fov(image, depth, mask, points, fov).')
@click.option('--glb', 'save_glb_', is_flag=True, help='Whether to save the output as a.glb file. The color will be saved as a texture.')
@click.option('--ply', 'save_ply_', is_flag=True, help='Whether to save the output as a.ply file. The color will be saved as vertex colors.')
@click.option('--show', 'show', is_flag=True, help='Whether show the output in a window. Note that this requires pyglet<2 installed as required by trimesh.')
def main(
input_path: str,
output_path: str,
pretrained_model_name_or_path: str,
device_name: str,
resize_to: int,
resolution_level: int,
threshold: float,
batch_size: int,
save_splitted: bool,
save_maps_: bool,
save_glb_: bool,
save_ply_: bool,
show: bool,
):
device = torch.device(device_name)
include_suffices = ['jpg', 'png', 'jpeg', 'JPG', 'PNG', 'JPEG']
if Path(input_path).is_dir():
image_paths = sorted(itertools.chain(*(Path(input_path).rglob(f'*.{suffix}') for suffix in include_suffices)))
else:
image_paths = [Path(input_path)]
if len(image_paths) == 0:
raise FileNotFoundError(f'No image files found in {input_path}')
if not any([save_maps_, save_glb_, save_ply_]):
warnings.warn('No output format specified. Please use "--maps", "--glb", or "--ply" to specify the output.')
model = MoGeModel.from_pretrained(pretrained_model_name_or_path).to(device).eval()
for image_path in (pbar := tqdm(image_paths, desc='Total images', disable=len(image_paths) <= 1)):
image = cv2.cvtColor(cv2.imread(str(image_path)), cv2.COLOR_BGR2RGB)
height, width = image.shape[:2]
if resize_to is not None:
height, width = min(resize_to, int(resize_to * height / width)), min(resize_to, int(resize_to * width / height))
image = cv2.resize(image, (width, height), cv2.INTER_AREA)
splitted_extrinsics, splitted_intriniscs = get_panorama_cameras()
splitted_resolution = 512
splitted_images = split_panorama_image(image, splitted_extrinsics, splitted_intriniscs, splitted_resolution)
# Infer each view
print('Inferring...') if pbar.disable else pbar.set_postfix_str(f'Inferring')
splitted_distance_maps, splitted_masks = [], []
for i in trange(0, len(splitted_images), batch_size, desc='Inferring splitted views', disable=len(splitted_images) <= batch_size, leave=False):
image_tensor = torch.tensor(np.stack(splitted_images[i:i + batch_size]) / 255, dtype=torch.float32, device=device).permute(0, 3, 1, 2)
fov_x, fov_y = np.rad2deg(utils3d.numpy.intrinsics_to_fov(np.array(splitted_intriniscs[i:i + batch_size])))
fov_x = torch.tensor(fov_x, dtype=torch.float32, device=device)
output = model.infer(image_tensor, fov_x=fov_x, apply_mask=False)
distance_map, mask = output['points'].norm(dim=-1).cpu().numpy(), output['mask'].cpu().numpy()
splitted_distance_maps.extend(list(distance_map))
splitted_masks.extend(list(mask))
# Save splitted
if save_splitted:
splitted_save_path = Path(output_path, image_path.stem, 'splitted')
splitted_save_path.mkdir(exist_ok=True, parents=True)
for i in range(len(splitted_images)):
cv2.imwrite(str(splitted_save_path / f'{i:02d}.jpg'), cv2.cvtColor(splitted_images[i], cv2.COLOR_RGB2BGR))
cv2.imwrite(str(splitted_save_path / f'{i:02d}_distance_vis.png'), cv2.cvtColor(colorize_depth(splitted_distance_maps[i], splitted_masks[i]), cv2.COLOR_RGB2BGR))
# Merge
print('Merging...') if pbar.disable else pbar.set_postfix_str(f'Merging')
merging_width, merging_height = min(1920, width), min(960, height)
panorama_depth, panorama_mask = merge_panorama_depth(merging_width, merging_height, splitted_distance_maps, splitted_masks, splitted_extrinsics, splitted_intriniscs)
panorama_depth = panorama_depth.astype(np.float32)
panorama_depth = cv2.resize(panorama_depth, (width, height), cv2.INTER_LINEAR)
panorama_mask = cv2.resize(panorama_mask.astype(np.uint8), (width, height), cv2.INTER_NEAREST) > 0
points = panorama_depth[:, :, None] * spherical_uv_to_directions(utils3d.numpy.image_uv(width=width, height=height))
# Write outputs
print('Writing outputs...') if pbar.disable else pbar.set_postfix_str(f'Inferring')
save_path = Path(output_path, image_path.relative_to(input_path).parent, image_path.stem)
save_path.mkdir(exist_ok=True, parents=True)
if save_maps_:
cv2.imwrite(str(save_path / 'image.jpg'), cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
cv2.imwrite(str(save_path / 'depth_vis.png'), cv2.cvtColor(colorize_depth(panorama_depth, mask=panorama_mask), cv2.COLOR_RGB2BGR))
cv2.imwrite(str(save_path / 'depth.exr'), panorama_depth, [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
cv2.imwrite(str(save_path / 'points.exr'), points, [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
cv2.imwrite(str(save_path /'mask.png'), (panorama_mask * 255).astype(np.uint8))
# Export mesh & visulization
if save_glb_ or save_ply_ or show:
normals, normals_mask = utils3d.numpy.points_to_normals(points, panorama_mask)
faces, vertices, vertex_colors, vertex_uvs = utils3d.numpy.image_mesh(
points,
image.astype(np.float32) / 255,
utils3d.numpy.image_uv(width=width, height=height),
mask=panorama_mask & ~(utils3d.numpy.depth_edge(panorama_depth, rtol=threshold) & utils3d.numpy.normals_edge(normals, tol=5, mask=normals_mask)),
tri=True
)
if save_glb_:
save_glb(save_path / 'mesh.glb', vertices, faces, vertex_uvs, image)
if save_ply_:
save_ply(save_path / 'mesh.ply', vertices, faces, vertex_colors)
if show:
trimesh.Trimesh(
vertices=vertices,
vertex_colors=vertex_colors,
faces=faces,
process=False
).show()
if __name__ == '__main__':
main() |