File size: 103,505 Bytes
3aba902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
# Auto-generated interface file
from typing import List, Tuple, Dict, Union, Optional, Any, overload, Literal, Callable
import numpy as numpy_
import torch as torch_
import nvdiffrast.torch
import numbers
from . import numpy, torch
import utils3d.numpy, utils3d.torch

__all__ = ["triangulate", 
"compute_face_normal", 
"compute_face_angle", 
"compute_vertex_normal", 
"compute_vertex_normal_weighted", 
"remove_corrupted_faces", 
"merge_duplicate_vertices", 
"remove_unreferenced_vertices", 
"subdivide_mesh_simple", 
"mesh_relations", 
"flatten_mesh_indices", 
"calc_quad_candidates", 
"calc_quad_distortion", 
"calc_quad_direction", 
"calc_quad_smoothness", 
"sovle_quad", 
"sovle_quad_qp", 
"tri_to_quad", 
"sliding_window_1d", 
"sliding_window_nd", 
"sliding_window_2d", 
"max_pool_1d", 
"max_pool_2d", 
"max_pool_nd", 
"depth_edge", 
"normals_edge", 
"depth_aliasing", 
"interpolate", 
"image_scrcoord", 
"image_uv", 
"image_pixel_center", 
"image_pixel", 
"image_mesh", 
"image_mesh_from_depth", 
"depth_to_normals", 
"points_to_normals", 
"chessboard", 
"cube", 
"icosahedron", 
"square", 
"camera_frustum", 
"perspective", 
"perspective_from_fov", 
"perspective_from_fov_xy", 
"intrinsics_from_focal_center", 
"intrinsics_from_fov", 
"fov_to_focal", 
"focal_to_fov", 
"intrinsics_to_fov", 
"view_look_at", 
"extrinsics_look_at", 
"perspective_to_intrinsics", 
"perspective_to_near_far", 
"intrinsics_to_perspective", 
"extrinsics_to_view", 
"view_to_extrinsics", 
"normalize_intrinsics", 
"crop_intrinsics", 
"pixel_to_uv", 
"pixel_to_ndc", 
"uv_to_pixel", 
"project_depth", 
"depth_buffer_to_linear", 
"unproject_cv", 
"unproject_gl", 
"project_cv", 
"project_gl", 
"quaternion_to_matrix", 
"axis_angle_to_matrix", 
"matrix_to_quaternion", 
"extrinsics_to_essential", 
"euler_axis_angle_rotation", 
"euler_angles_to_matrix", 
"skew_symmetric", 
"rotation_matrix_from_vectors", 
"ray_intersection", 
"se3_matrix", 
"slerp_quaternion", 
"slerp_vector", 
"lerp", 
"lerp_se3_matrix", 
"piecewise_lerp", 
"piecewise_lerp_se3_matrix", 
"apply_transform", 
"linear_spline_interpolate", 
"RastContext", 
"rasterize_triangle_faces", 
"rasterize_edges", 
"texture", 
"warp_image_by_depth", 
"test_rasterization", 
"compute_face_angles", 
"compute_face_tbn", 
"compute_vertex_tbn", 
"laplacian", 
"laplacian_smooth_mesh", 
"taubin_smooth_mesh", 
"laplacian_hc_smooth_mesh", 
"get_rays", 
"get_image_rays", 
"get_mipnerf_cones", 
"volume_rendering", 
"bin_sample", 
"importance_sample", 
"nerf_render_rays", 
"mipnerf_render_rays", 
"nerf_render_view", 
"mipnerf_render_view", 
"InstantNGP", 
"point_to_normal", 
"depth_to_normal", 
"masked_min", 
"masked_max", 
"bounding_rect", 
"intrinsics_from_fov_xy", 
"matrix_to_euler_angles", 
"matrix_to_axis_angle", 
"axis_angle_to_quaternion", 
"quaternion_to_axis_angle", 
"slerp", 
"interpolate_extrinsics", 
"interpolate_view", 
"to4x4", 
"rotation_matrix_2d", 
"rotate_2d", 
"translate_2d", 
"scale_2d", 
"apply_2d", 
"warp_image_by_forward_flow"]

@overload
def triangulate(faces: numpy_.ndarray, vertices: numpy_.ndarray = None, backslash: numpy_.ndarray = None) -> numpy_.ndarray:
    """Triangulate a polygonal mesh.

Args:
    faces (np.ndarray): [L, P] polygonal faces
    vertices (np.ndarray, optional): [N, 3] 3-dimensional vertices.
        If given, the triangulation is performed according to the distance
        between vertices. Defaults to None.
    backslash (np.ndarray, optional): [L] boolean array indicating
        how to triangulate the quad faces. Defaults to None.

Returns:
    (np.ndarray): [L * (P - 2), 3] triangular faces"""
    utils3d.numpy.mesh.triangulate

@overload
def compute_face_normal(vertices: numpy_.ndarray, faces: numpy_.ndarray) -> numpy_.ndarray:
    """Compute face normals of a triangular mesh

Args:
    vertices (np.ndarray): [..., N, 3] 3-dimensional vertices
    faces (np.ndarray): [T, 3] triangular face indices

Returns:
    normals (np.ndarray): [..., T, 3] face normals"""
    utils3d.numpy.mesh.compute_face_normal

@overload
def compute_face_angle(vertices: numpy_.ndarray, faces: numpy_.ndarray, eps: float = 1e-12) -> numpy_.ndarray:
    """Compute face angles of a triangular mesh

Args:
    vertices (np.ndarray): [..., N, 3] 3-dimensional vertices
    faces (np.ndarray): [T, 3] triangular face indices

Returns:
    angles (np.ndarray): [..., T, 3] face angles"""
    utils3d.numpy.mesh.compute_face_angle

@overload
def compute_vertex_normal(vertices: numpy_.ndarray, faces: numpy_.ndarray, face_normal: numpy_.ndarray = None) -> numpy_.ndarray:
    """Compute vertex normals of a triangular mesh by averaging neightboring face normals
TODO: can be improved.

Args:
    vertices (np.ndarray): [..., N, 3] 3-dimensional vertices
    faces (np.ndarray): [T, 3] triangular face indices
    face_normal (np.ndarray, optional): [..., T, 3] face normals.
        None to compute face normals from vertices and faces. Defaults to None.

Returns:
    normals (np.ndarray): [..., N, 3] vertex normals"""
    utils3d.numpy.mesh.compute_vertex_normal

@overload
def compute_vertex_normal_weighted(vertices: numpy_.ndarray, faces: numpy_.ndarray, face_normal: numpy_.ndarray = None) -> numpy_.ndarray:
    """Compute vertex normals of a triangular mesh by weighted sum of neightboring face normals
according to the angles

Args:
    vertices (np.ndarray): [..., N, 3] 3-dimensional vertices
    faces (np.ndarray): [..., T, 3] triangular face indices
    face_normal (np.ndarray, optional): [..., T, 3] face normals.
        None to compute face normals from vertices and faces. Defaults to None.

Returns:
    normals (np.ndarray): [..., N, 3] vertex normals"""
    utils3d.numpy.mesh.compute_vertex_normal_weighted

@overload
def remove_corrupted_faces(faces: numpy_.ndarray) -> numpy_.ndarray:
    """Remove corrupted faces (faces with duplicated vertices)

Args:
    faces (np.ndarray): [T, 3] triangular face indices

Returns:
    np.ndarray: [T_, 3] triangular face indices"""
    utils3d.numpy.mesh.remove_corrupted_faces

@overload
def merge_duplicate_vertices(vertices: numpy_.ndarray, faces: numpy_.ndarray, tol: float = 1e-06) -> Tuple[numpy_.ndarray, numpy_.ndarray]:
    """Merge duplicate vertices of a triangular mesh. 
Duplicate vertices are merged by selecte one of them, and the face indices are updated accordingly.

Args:
    vertices (np.ndarray): [N, 3] 3-dimensional vertices
    faces (np.ndarray): [T, 3] triangular face indices
    tol (float, optional): tolerance for merging. Defaults to 1e-6.

Returns:
    vertices (np.ndarray): [N_, 3] 3-dimensional vertices
    faces (np.ndarray): [T, 3] triangular face indices"""
    utils3d.numpy.mesh.merge_duplicate_vertices

@overload
def remove_unreferenced_vertices(faces: numpy_.ndarray, *vertice_attrs, return_indices: bool = False) -> Tuple[numpy_.ndarray, ...]:
    """Remove unreferenced vertices of a mesh. 
Unreferenced vertices are removed, and the face indices are updated accordingly.

Args:
    faces (np.ndarray): [T, P] face indices
    *vertice_attrs: vertex attributes

Returns:
    faces (np.ndarray): [T, P] face indices
    *vertice_attrs: vertex attributes
    indices (np.ndarray, optional): [N] indices of vertices that are kept. Defaults to None."""
    utils3d.numpy.mesh.remove_unreferenced_vertices

@overload
def subdivide_mesh_simple(vertices: numpy_.ndarray, faces: numpy_.ndarray, n: int = 1) -> Tuple[numpy_.ndarray, numpy_.ndarray]:
    """Subdivide a triangular mesh by splitting each triangle into 4 smaller triangles.
NOTE: All original vertices are kept, and new vertices are appended to the end of the vertex list.

Args:
    vertices (np.ndarray): [N, 3] 3-dimensional vertices
    faces (np.ndarray): [T, 3] triangular face indices
    n (int, optional): number of subdivisions. Defaults to 1.

Returns:
    vertices (np.ndarray): [N_, 3] subdivided 3-dimensional vertices
    faces (np.ndarray): [4 * T, 3] subdivided triangular face indices"""
    utils3d.numpy.mesh.subdivide_mesh_simple

@overload
def mesh_relations(faces: numpy_.ndarray) -> Tuple[numpy_.ndarray, numpy_.ndarray]:
    """Calculate the relation between vertices and faces.
NOTE: The input mesh must be a manifold triangle mesh.

Args:
    faces (np.ndarray): [T, 3] triangular face indices

Returns:
    edges (np.ndarray): [E, 2] edge indices
    edge2face (np.ndarray): [E, 2] edge to face relation. The second column is -1 if the edge is boundary.
    face2edge (np.ndarray): [T, 3] face to edge relation
    face2face (np.ndarray): [T, 3] face to face relation"""
    utils3d.numpy.mesh.mesh_relations

@overload
def flatten_mesh_indices(*args: numpy_.ndarray) -> Tuple[numpy_.ndarray, ...]:
    utils3d.numpy.mesh.flatten_mesh_indices

@overload
def calc_quad_candidates(edges: numpy_.ndarray, face2edge: numpy_.ndarray, edge2face: numpy_.ndarray):
    """Calculate the candidate quad faces.

Args:
    edges (np.ndarray): [E, 2] edge indices
    face2edge (np.ndarray): [T, 3] face to edge relation
    edge2face (np.ndarray): [E, 2] edge to face relation

Returns:
    quads (np.ndarray): [Q, 4] quad candidate indices
    quad2edge (np.ndarray): [Q, 4] edge to quad candidate relation
    quad2adj (np.ndarray): [Q, 8] adjacent quad candidates of each quad candidate
    quads_valid (np.ndarray): [E] whether the quad corresponding to the edge is valid"""
    utils3d.numpy.quadmesh.calc_quad_candidates

@overload
def calc_quad_distortion(vertices: numpy_.ndarray, quads: numpy_.ndarray):
    """Calculate the distortion of each candidate quad face.

Args:
    vertices (np.ndarray): [N, 3] 3-dimensional vertices
    quads (np.ndarray): [Q, 4] quad face indices

Returns:
    distortion (np.ndarray): [Q] distortion of each quad face"""
    utils3d.numpy.quadmesh.calc_quad_distortion

@overload
def calc_quad_direction(vertices: numpy_.ndarray, quads: numpy_.ndarray):
    """Calculate the direction of each candidate quad face.

Args:
    vertices (np.ndarray): [N, 3] 3-dimensional vertices
    quads (np.ndarray): [Q, 4] quad face indices

Returns:
    direction (np.ndarray): [Q, 4] direction of each quad face.
        Represented by the angle between the crossing and each edge."""
    utils3d.numpy.quadmesh.calc_quad_direction

@overload
def calc_quad_smoothness(quad2edge: numpy_.ndarray, quad2adj: numpy_.ndarray, quads_direction: numpy_.ndarray):
    """Calculate the smoothness of each candidate quad face connection.

Args:
    quad2adj (np.ndarray): [Q, 8] adjacent quad faces of each quad face
    quads_direction (np.ndarray): [Q, 4] direction of each quad face

Returns:
    smoothness (np.ndarray): [Q, 8] smoothness of each quad face connection"""
    utils3d.numpy.quadmesh.calc_quad_smoothness

@overload
def sovle_quad(face2edge: numpy_.ndarray, edge2face: numpy_.ndarray, quad2adj: numpy_.ndarray, quads_distortion: numpy_.ndarray, quads_smoothness: numpy_.ndarray, quads_valid: numpy_.ndarray):
    """Solve the quad mesh from the candidate quad faces.

Args:
    face2edge (np.ndarray): [T, 3] face to edge relation
    edge2face (np.ndarray): [E, 2] edge to face relation
    quad2adj (np.ndarray): [Q, 8] adjacent quad faces of each quad face
    quads_distortion (np.ndarray): [Q] distortion of each quad face
    quads_smoothness (np.ndarray): [Q, 8] smoothness of each quad face connection
    quads_valid (np.ndarray): [E] whether the quad corresponding to the edge is valid

Returns:
    weights (np.ndarray): [Q] weight of each valid quad face"""
    utils3d.numpy.quadmesh.sovle_quad

@overload
def sovle_quad_qp(face2edge: numpy_.ndarray, edge2face: numpy_.ndarray, quad2adj: numpy_.ndarray, quads_distortion: numpy_.ndarray, quads_smoothness: numpy_.ndarray, quads_valid: numpy_.ndarray):
    """Solve the quad mesh from the candidate quad faces.

Args:
    face2edge (np.ndarray): [T, 3] face to edge relation
    edge2face (np.ndarray): [E, 2] edge to face relation
    quad2adj (np.ndarray): [Q, 8] adjacent quad faces of each quad face
    quads_distortion (np.ndarray): [Q] distortion of each quad face
    quads_smoothness (np.ndarray): [Q, 8] smoothness of each quad face connection
    quads_valid (np.ndarray): [E] whether the quad corresponding to the edge is valid

Returns:
    weights (np.ndarray): [Q] weight of each valid quad face"""
    utils3d.numpy.quadmesh.sovle_quad_qp

@overload
def tri_to_quad(vertices: numpy_.ndarray, faces: numpy_.ndarray) -> Tuple[numpy_.ndarray, numpy_.ndarray]:
    """Convert a triangle mesh to a quad mesh.
NOTE: The input mesh must be a manifold mesh.

Args:
    vertices (np.ndarray): [N, 3] 3-dimensional vertices
    faces (np.ndarray): [T, 3] triangular face indices

Returns:
    vertices (np.ndarray): [N_, 3] 3-dimensional vertices
    faces (np.ndarray): [Q, 4] quad face indices"""
    utils3d.numpy.quadmesh.tri_to_quad

@overload
def sliding_window_1d(x: numpy_.ndarray, window_size: int, stride: int, axis: int = -1):
    """Return x view of the input array with x sliding window of the given kernel size and stride.
The sliding window is performed over the given axis, and the window dimension is append to the end of the output array's shape.

Args:
    x (np.ndarray): input array with shape (..., axis_size, ...)
    kernel_size (int): size of the sliding window
    stride (int): stride of the sliding window
    axis (int): axis to perform sliding window over

Returns:
    a_sliding (np.ndarray): view of the input array with shape (..., n_windows, ..., kernel_size), where n_windows = (axis_size - kernel_size + 1) // stride"""
    utils3d.numpy.utils.sliding_window_1d

@overload
def sliding_window_nd(x: numpy_.ndarray, window_size: Tuple[int, ...], stride: Tuple[int, ...], axis: Tuple[int, ...]) -> numpy_.ndarray:
    utils3d.numpy.utils.sliding_window_nd

@overload
def sliding_window_2d(x: numpy_.ndarray, window_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]], axis: Tuple[int, int] = (-2, -1)) -> numpy_.ndarray:
    utils3d.numpy.utils.sliding_window_2d

@overload
def max_pool_1d(x: numpy_.ndarray, kernel_size: int, stride: int, padding: int = 0, axis: int = -1):
    utils3d.numpy.utils.max_pool_1d

@overload
def max_pool_2d(x: numpy_.ndarray, kernel_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]], padding: Union[int, Tuple[int, int]], axis: Tuple[int, int] = (-2, -1)):
    utils3d.numpy.utils.max_pool_2d

@overload
def max_pool_nd(x: numpy_.ndarray, kernel_size: Tuple[int, ...], stride: Tuple[int, ...], padding: Tuple[int, ...], axis: Tuple[int, ...]) -> numpy_.ndarray:
    utils3d.numpy.utils.max_pool_nd

@overload
def depth_edge(depth: numpy_.ndarray, atol: float = None, rtol: float = None, kernel_size: int = 3, mask: numpy_.ndarray = None) -> numpy_.ndarray:
    """Compute the edge mask from depth map. The edge is defined as the pixels whose neighbors have large difference in depth.

Args:
    depth (np.ndarray): shape (..., height, width), linear depth map
    atol (float): absolute tolerance
    rtol (float): relative tolerance

Returns:
    edge (np.ndarray): shape (..., height, width) of dtype torch.bool"""
    utils3d.numpy.utils.depth_edge

@overload
def normals_edge(normals: numpy_.ndarray, tol: float, kernel_size: int = 3, mask: numpy_.ndarray = None) -> numpy_.ndarray:
    """Compute the edge mask from normal map.

Args:
    normal (np.ndarray): shape (..., height, width, 3), normal map
    tol (float): tolerance in degrees

Returns:
    edge (np.ndarray): shape (..., height, width) of dtype torch.bool"""
    utils3d.numpy.utils.normals_edge

@overload
def depth_aliasing(depth: numpy_.ndarray, atol: float = None, rtol: float = None, kernel_size: int = 3, mask: numpy_.ndarray = None) -> numpy_.ndarray:
    """Compute the map that indicates the aliasing of x depth map. The aliasing is defined as the pixels which neither close to the maximum nor the minimum of its neighbors.
Args:
    depth (np.ndarray): shape (..., height, width), linear depth map
    atol (float): absolute tolerance
    rtol (float): relative tolerance

Returns:
    edge (np.ndarray): shape (..., height, width) of dtype torch.bool"""
    utils3d.numpy.utils.depth_aliasing

@overload
def interpolate(bary: numpy_.ndarray, tri_id: numpy_.ndarray, attr: numpy_.ndarray, faces: numpy_.ndarray) -> numpy_.ndarray:
    """Interpolate with given barycentric coordinates and triangle indices

Args:
    bary (np.ndarray): shape (..., 3), barycentric coordinates
    tri_id (np.ndarray): int array of shape (...), triangle indices
    attr (np.ndarray): shape (N, M), vertices attributes
    faces (np.ndarray): int array of shape (T, 3), face vertex indices

Returns:
    np.ndarray: shape (..., M) interpolated result"""
    utils3d.numpy.utils.interpolate

@overload
def image_scrcoord(width: int, height: int) -> numpy_.ndarray:
    """Get OpenGL's screen space coordinates, ranging in [0, 1].
[0, 0] is the bottom-left corner of the image.

Args:
    width (int): image width
    height (int): image height

Returns:
    (np.ndarray): shape (height, width, 2)"""
    utils3d.numpy.utils.image_scrcoord

@overload
def image_uv(height: int, width: int, left: int = None, top: int = None, right: int = None, bottom: int = None, dtype: numpy_.dtype = numpy_.float32) -> numpy_.ndarray:
    """Get image space UV grid, ranging in [0, 1]. 

>>> image_uv(10, 10):
[[[0.05, 0.05], [0.15, 0.05], ..., [0.95, 0.05]],
 [[0.05, 0.15], [0.15, 0.15], ..., [0.95, 0.15]],
  ...             ...                  ...
 [[0.05, 0.95], [0.15, 0.95], ..., [0.95, 0.95]]]

Args:
    width (int): image width
    height (int): image height

Returns:
    np.ndarray: shape (height, width, 2)"""
    utils3d.numpy.utils.image_uv

@overload
def image_pixel_center(height: int, width: int, left: int = None, top: int = None, right: int = None, bottom: int = None, dtype: numpy_.dtype = numpy_.float32) -> numpy_.ndarray:
    """Get image pixel center coordinates, ranging in [0, width] and [0, height].
`image[i, j]` has pixel center coordinates `(j + 0.5, i + 0.5)`.

>>> image_pixel_center(10, 10):
[[[0.5, 0.5], [1.5, 0.5], ..., [9.5, 0.5]],
 [[0.5, 1.5], [1.5, 1.5], ..., [9.5, 1.5]],
  ...             ...                  ...
[[0.5, 9.5], [1.5, 9.5], ..., [9.5, 9.5]]]

Args:
    width (int): image width
    height (int): image height

Returns:
    np.ndarray: shape (height, width, 2)"""
    utils3d.numpy.utils.image_pixel_center

@overload
def image_pixel(height: int, width: int, left: int = None, top: int = None, right: int = None, bottom: int = None, dtype: numpy_.dtype = numpy_.int32) -> numpy_.ndarray:
    """Get image pixel coordinates grid, ranging in [0, width - 1] and [0, height - 1].
`image[i, j]` has pixel center coordinates `(j, i)`.

>>> image_pixel_center(10, 10):
[[[0, 0], [1, 0], ..., [9, 0]],
 [[0, 1.5], [1, 1], ..., [9, 1]],
  ...             ...                  ...
[[0, 9.5], [1, 9], ..., [9, 9 ]]]

Args:
    width (int): image width
    height (int): image height

Returns:
    np.ndarray: shape (height, width, 2)"""
    utils3d.numpy.utils.image_pixel

@overload
def image_mesh(*image_attrs: numpy_.ndarray, mask: numpy_.ndarray = None, tri: bool = False, return_indices: bool = False) -> Tuple[numpy_.ndarray, ...]:
    """Get a mesh regarding image pixel uv coordinates as vertices and image grid as faces.

Args:
    *image_attrs (np.ndarray): image attributes in shape (height, width, [channels])
    mask (np.ndarray, optional): binary mask of shape (height, width), dtype=bool. Defaults to None.

Returns:
    faces (np.ndarray): faces connecting neighboring pixels. shape (T, 4) if tri is False, else (T, 3)
    *vertex_attrs (np.ndarray): vertex attributes in corresponding order with input image_attrs
    indices (np.ndarray, optional): indices of vertices in the original mesh"""
    utils3d.numpy.utils.image_mesh

@overload
def image_mesh_from_depth(depth: numpy_.ndarray, extrinsics: numpy_.ndarray = None, intrinsics: numpy_.ndarray = None, *vertice_attrs: numpy_.ndarray, atol: float = None, rtol: float = None, remove_by_depth: bool = False, return_uv: bool = False, return_indices: bool = False) -> Tuple[numpy_.ndarray, ...]:
    """Get x triangle mesh by lifting depth map to 3D.

Args:
    depth (np.ndarray): [H, W] depth map
    extrinsics (np.ndarray, optional): [4, 4] extrinsics matrix. Defaults to None.
    intrinsics (np.ndarray, optional): [3, 3] intrinsics matrix. Defaults to None.
    *vertice_attrs (np.ndarray): [H, W, C] vertex attributes. Defaults to None.
    atol (float, optional): absolute tolerance. Defaults to None.
    rtol (float, optional): relative tolerance. Defaults to None.
        triangles with vertices having depth difference larger than atol + rtol * depth will be marked.
    remove_by_depth (bool, optional): whether to remove triangles with large depth difference. Defaults to True.
    return_uv (bool, optional): whether to return uv coordinates. Defaults to False.
    return_indices (bool, optional): whether to return indices of vertices in the original mesh. Defaults to False.

Returns:
    vertices (np.ndarray): [N, 3] vertices
    faces (np.ndarray): [T, 3] faces
    *vertice_attrs (np.ndarray): [N, C] vertex attributes
    image_uv (np.ndarray, optional): [N, 2] uv coordinates
    ref_indices (np.ndarray, optional): [N] indices of vertices in the original mesh"""
    utils3d.numpy.utils.image_mesh_from_depth

@overload
def depth_to_normals(depth: numpy_.ndarray, intrinsics: numpy_.ndarray, mask: numpy_.ndarray = None) -> numpy_.ndarray:
    """Calculate normal map from depth map. Value range is [-1, 1]. Normal direction in OpenGL identity camera's coordinate system.

Args:
    depth (np.ndarray): shape (height, width), linear depth map
    intrinsics (np.ndarray): shape (3, 3), intrinsics matrix
Returns:
    normal (np.ndarray): shape (height, width, 3), normal map. """
    utils3d.numpy.utils.depth_to_normals

@overload
def points_to_normals(point: numpy_.ndarray, mask: numpy_.ndarray = None) -> numpy_.ndarray:
    """Calculate normal map from point map. Value range is [-1, 1]. Normal direction in OpenGL identity camera's coordinate system.

Args:
    point (np.ndarray): shape (height, width, 3), point map
Returns:
    normal (np.ndarray): shape (height, width, 3), normal map. """
    utils3d.numpy.utils.points_to_normals

@overload
def chessboard(width: int, height: int, grid_size: int, color_a: numpy_.ndarray, color_b: numpy_.ndarray) -> numpy_.ndarray:
    """get x chessboard image

Args:
    width (int): image width
    height (int): image height
    grid_size (int): size of chessboard grid
    color_a (np.ndarray): color of the grid at the top-left corner
    color_b (np.ndarray): color in complementary grid cells

Returns:
    image (np.ndarray): shape (height, width, channels), chessboard image"""
    utils3d.numpy.utils.chessboard

@overload
def cube(tri: bool = False) -> Tuple[numpy_.ndarray, numpy_.ndarray]:
    """Get x cube mesh of size 1 centered at origin.

### Parameters
    tri (bool, optional): return triangulated mesh. Defaults to False, which returns quad mesh.

### Returns
    vertices (np.ndarray): shape (8, 3) 
    faces (np.ndarray): shape (12, 3)"""
    utils3d.numpy.utils.cube

@overload
def icosahedron():
    utils3d.numpy.utils.icosahedron

@overload
def square(tri: bool = False) -> Tuple[numpy_.ndarray, numpy_.ndarray]:
    """Get a square mesh of area 1 centered at origin in the xy-plane.

### Returns
    vertices (np.ndarray): shape (4, 3)
    faces (np.ndarray): shape (1, 4)"""
    utils3d.numpy.utils.square

@overload
def camera_frustum(extrinsics: numpy_.ndarray, intrinsics: numpy_.ndarray, depth: float = 1.0) -> Tuple[numpy_.ndarray, numpy_.ndarray, numpy_.ndarray]:
    """Get x triangle mesh of camera frustum."""
    utils3d.numpy.utils.camera_frustum

@overload
def perspective(fov_y: Union[float, numpy_.ndarray], aspect: Union[float, numpy_.ndarray], near: Union[float, numpy_.ndarray], far: Union[float, numpy_.ndarray]) -> numpy_.ndarray:
    """Get OpenGL perspective matrix

Args:
    fov_y (float | np.ndarray): field of view in y axis
    aspect (float | np.ndarray): aspect ratio
    near (float | np.ndarray): near plane to clip
    far (float | np.ndarray): far plane to clip

Returns:
    (np.ndarray): [..., 4, 4] perspective matrix"""
    utils3d.numpy.transforms.perspective

@overload
def perspective_from_fov(fov: Union[float, numpy_.ndarray], width: Union[int, numpy_.ndarray], height: Union[int, numpy_.ndarray], near: Union[float, numpy_.ndarray], far: Union[float, numpy_.ndarray]) -> numpy_.ndarray:
    """Get OpenGL perspective matrix from field of view in largest dimension

Args:
    fov (float | np.ndarray): field of view in largest dimension
    width (int | np.ndarray): image width
    height (int | np.ndarray): image height
    near (float | np.ndarray): near plane to clip
    far (float | np.ndarray): far plane to clip

Returns:
    (np.ndarray): [..., 4, 4] perspective matrix"""
    utils3d.numpy.transforms.perspective_from_fov

@overload
def perspective_from_fov_xy(fov_x: Union[float, numpy_.ndarray], fov_y: Union[float, numpy_.ndarray], near: Union[float, numpy_.ndarray], far: Union[float, numpy_.ndarray]) -> numpy_.ndarray:
    """Get OpenGL perspective matrix from field of view in x and y axis

Args:
    fov_x (float | np.ndarray): field of view in x axis
    fov_y (float | np.ndarray): field of view in y axis
    near (float | np.ndarray): near plane to clip
    far (float | np.ndarray): far plane to clip

Returns:
    (np.ndarray): [..., 4, 4] perspective matrix"""
    utils3d.numpy.transforms.perspective_from_fov_xy

@overload
def intrinsics_from_focal_center(fx: Union[float, numpy_.ndarray], fy: Union[float, numpy_.ndarray], cx: Union[float, numpy_.ndarray], cy: Union[float, numpy_.ndarray], dtype: Optional[numpy_.dtype] = numpy_.float32) -> numpy_.ndarray:
    """Get OpenCV intrinsics matrix

Returns:
    (np.ndarray): [..., 3, 3] OpenCV intrinsics matrix"""
    utils3d.numpy.transforms.intrinsics_from_focal_center

@overload
def intrinsics_from_fov(fov_max: Union[float, numpy_.ndarray] = None, fov_min: Union[float, numpy_.ndarray] = None, fov_x: Union[float, numpy_.ndarray] = None, fov_y: Union[float, numpy_.ndarray] = None, width: Union[int, numpy_.ndarray] = None, height: Union[int, numpy_.ndarray] = None) -> numpy_.ndarray:
    """Get normalized OpenCV intrinsics matrix from given field of view.
You can provide either fov_max, fov_min, fov_x or fov_y

Args:
    width (int | np.ndarray): image width
    height (int | np.ndarray): image height
    fov_max (float | np.ndarray): field of view in largest dimension
    fov_min (float | np.ndarray): field of view in smallest dimension
    fov_x (float | np.ndarray): field of view in x axis
    fov_y (float | np.ndarray): field of view in y axis

Returns:
    (np.ndarray): [..., 3, 3] OpenCV intrinsics matrix"""
    utils3d.numpy.transforms.intrinsics_from_fov

@overload
def fov_to_focal(fov: numpy_.ndarray):
    utils3d.numpy.transforms.fov_to_focal

@overload
def focal_to_fov(focal: numpy_.ndarray):
    utils3d.numpy.transforms.focal_to_fov

@overload
def intrinsics_to_fov(intrinsics: numpy_.ndarray) -> Tuple[numpy_.ndarray, numpy_.ndarray]:
    utils3d.numpy.transforms.intrinsics_to_fov

@overload
def view_look_at(eye: numpy_.ndarray, look_at: numpy_.ndarray, up: numpy_.ndarray) -> numpy_.ndarray:
    """Get OpenGL view matrix looking at something

Args:
    eye (np.ndarray): [..., 3] the eye position
    look_at (np.ndarray): [..., 3] the position to look at
    up (np.ndarray): [..., 3] head up direction (y axis in screen space). Not necessarily othogonal to view direction

Returns:
    (np.ndarray): [..., 4, 4], view matrix"""
    utils3d.numpy.transforms.view_look_at

@overload
def extrinsics_look_at(eye: numpy_.ndarray, look_at: numpy_.ndarray, up: numpy_.ndarray) -> numpy_.ndarray:
    """Get OpenCV extrinsics matrix looking at something

Args:
    eye (np.ndarray): [..., 3] the eye position
    look_at (np.ndarray): [..., 3] the position to look at
    up (np.ndarray): [..., 3] head up direction (-y axis in screen space). Not necessarily othogonal to view direction

Returns:
    (np.ndarray): [..., 4, 4], extrinsics matrix"""
    utils3d.numpy.transforms.extrinsics_look_at

@overload
def perspective_to_intrinsics(perspective: numpy_.ndarray) -> numpy_.ndarray:
    """OpenGL perspective matrix to OpenCV intrinsics

Args:
    perspective (np.ndarray): [..., 4, 4] OpenGL perspective matrix

Returns:
    (np.ndarray): shape [..., 3, 3] OpenCV intrinsics"""
    utils3d.numpy.transforms.perspective_to_intrinsics

@overload
def perspective_to_near_far(perspective: numpy_.ndarray) -> Tuple[numpy_.ndarray, numpy_.ndarray]:
    """Get near and far planes from OpenGL perspective matrix

Args:"""
    utils3d.numpy.transforms.perspective_to_near_far

@overload
def intrinsics_to_perspective(intrinsics: numpy_.ndarray, near: Union[float, numpy_.ndarray], far: Union[float, numpy_.ndarray]) -> numpy_.ndarray:
    """OpenCV intrinsics to OpenGL perspective matrix
NOTE: not work for tile-shifting intrinsics currently

Args:
    intrinsics (np.ndarray): [..., 3, 3] OpenCV intrinsics matrix
    near (float | np.ndarray): [...] near plane to clip
    far (float | np.ndarray): [...] far plane to clip
Returns:
    (np.ndarray): [..., 4, 4] OpenGL perspective matrix"""
    utils3d.numpy.transforms.intrinsics_to_perspective

@overload
def extrinsics_to_view(extrinsics: numpy_.ndarray) -> numpy_.ndarray:
    """OpenCV camera extrinsics to OpenGL view matrix

Args:
    extrinsics (np.ndarray): [..., 4, 4] OpenCV camera extrinsics matrix

Returns:
    (np.ndarray): [..., 4, 4] OpenGL view matrix"""
    utils3d.numpy.transforms.extrinsics_to_view

@overload
def view_to_extrinsics(view: numpy_.ndarray) -> numpy_.ndarray:
    """OpenGL view matrix to OpenCV camera extrinsics

Args:
    view (np.ndarray): [..., 4, 4] OpenGL view matrix

Returns:
    (np.ndarray): [..., 4, 4] OpenCV camera extrinsics matrix"""
    utils3d.numpy.transforms.view_to_extrinsics

@overload
def normalize_intrinsics(intrinsics: numpy_.ndarray, width: Union[int, numpy_.ndarray], height: Union[int, numpy_.ndarray], integer_pixel_centers: bool = True) -> numpy_.ndarray:
    """Normalize intrinsics from pixel cooridnates to uv coordinates

Args:
    intrinsics (np.ndarray): [..., 3, 3] camera intrinsics(s) to normalize
    width (int | np.ndarray): [...] image width(s)
    height (int | np.ndarray): [...] image height(s)
    integer_pixel_centers (bool): whether the integer pixel coordinates are at the center of the pixel. If False, the integer coordinates are at the left-top corner of the pixel.

Returns:
    (np.ndarray): [..., 3, 3] normalized camera intrinsics(s)"""
    utils3d.numpy.transforms.normalize_intrinsics

@overload
def crop_intrinsics(intrinsics: numpy_.ndarray, width: Union[int, numpy_.ndarray], height: Union[int, numpy_.ndarray], left: Union[int, numpy_.ndarray], top: Union[int, numpy_.ndarray], crop_width: Union[int, numpy_.ndarray], crop_height: Union[int, numpy_.ndarray]) -> numpy_.ndarray:
    """Evaluate the new intrinsics(s) after crop the image: cropped_img = img[top:top+crop_height, left:left+crop_width]

Args:
    intrinsics (np.ndarray): [..., 3, 3] camera intrinsics(s) to crop
    width (int | np.ndarray): [...] image width(s)
    height (int | np.ndarray): [...] image height(s)
    left (int | np.ndarray): [...] left crop boundary
    top (int | np.ndarray): [...] top crop boundary
    crop_width (int | np.ndarray): [...] crop width
    crop_height (int | np.ndarray): [...] crop height

Returns:
    (np.ndarray): [..., 3, 3] cropped camera intrinsics(s)"""
    utils3d.numpy.transforms.crop_intrinsics

@overload
def pixel_to_uv(pixel: numpy_.ndarray, width: Union[int, numpy_.ndarray], height: Union[int, numpy_.ndarray]) -> numpy_.ndarray:
    """Args:
    pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space,  x range is (0, W - 1), y range is (0, H - 1)
    width (int | np.ndarray): [...] image width(s)
    height (int | np.ndarray): [...] image height(s)

Returns:
    (np.ndarray): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1)"""
    utils3d.numpy.transforms.pixel_to_uv

@overload
def pixel_to_ndc(pixel: numpy_.ndarray, width: Union[int, numpy_.ndarray], height: Union[int, numpy_.ndarray]) -> numpy_.ndarray:
    """Args:
    pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1)
    width (int | np.ndarray): [...] image width(s)
    height (int | np.ndarray): [...] image height(s)

Returns:
    (np.ndarray): [..., 2] pixel coordinrates defined in ndc space, the range is (-1, 1)"""
    utils3d.numpy.transforms.pixel_to_ndc

@overload
def uv_to_pixel(uv: numpy_.ndarray, width: Union[int, numpy_.ndarray], height: Union[int, numpy_.ndarray]) -> numpy_.ndarray:
    """Args:
    pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space,  x range is (0, W - 1), y range is (0, H - 1)
    width (int | np.ndarray): [...] image width(s)
    height (int | np.ndarray): [...] image height(s)

Returns:
    (np.ndarray): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1)"""
    utils3d.numpy.transforms.uv_to_pixel

@overload
def project_depth(depth: numpy_.ndarray, near: Union[float, numpy_.ndarray], far: Union[float, numpy_.ndarray]) -> numpy_.ndarray:
    """Project linear depth to depth value in screen space

Args:
    depth (np.ndarray): [...] depth value
    near (float | np.ndarray): [...] near plane to clip
    far (float | np.ndarray): [...] far plane to clip

Returns:
    (np.ndarray): [..., 1] depth value in screen space, value ranging in [0, 1]"""
    utils3d.numpy.transforms.project_depth

@overload
def depth_buffer_to_linear(depth_buffer: numpy_.ndarray, near: Union[float, numpy_.ndarray], far: Union[float, numpy_.ndarray]) -> numpy_.ndarray:
    """OpenGL depth buffer to linear depth

Args:
    depth_buffer (np.ndarray): [...] depth value
    near (float | np.ndarray): [...] near plane to clip
    far (float | np.ndarray): [...] far plane to clip

Returns:
    (np.ndarray): [..., 1] linear depth"""
    utils3d.numpy.transforms.depth_buffer_to_linear

@overload
def unproject_cv(uv_coord: numpy_.ndarray, depth: numpy_.ndarray = None, extrinsics: numpy_.ndarray = None, intrinsics: numpy_.ndarray = None) -> numpy_.ndarray:
    """Unproject uv coordinates to 3D view space following the OpenCV convention

Args:
    uv_coord (np.ndarray): [..., N, 2] uv coordinates, value ranging in [0, 1].
        The origin (0., 0.) is corresponding to the left & top
    depth (np.ndarray): [..., N] depth value
    extrinsics (np.ndarray): [..., 4, 4] extrinsics matrix
    intrinsics (np.ndarray): [..., 3, 3] intrinsics matrix

Returns:
    points (np.ndarray): [..., N, 3] 3d points"""
    utils3d.numpy.transforms.unproject_cv

@overload
def unproject_gl(screen_coord: numpy_.ndarray, model: numpy_.ndarray = None, view: numpy_.ndarray = None, perspective: numpy_.ndarray = None) -> numpy_.ndarray:
    """Unproject screen space coordinates to 3D view space following the OpenGL convention (except for row major matrice)

Args:
    screen_coord (np.ndarray): [..., N, 3] screen space coordinates, value ranging in [0, 1].
        The origin (0., 0., 0.) is corresponding to the left & bottom & nearest
    model (np.ndarray): [..., 4, 4] model matrix
    view (np.ndarray): [..., 4, 4] view matrix
    perspective (np.ndarray): [..., 4, 4] perspective matrix

Returns:
    points (np.ndarray): [..., N, 3] 3d points"""
    utils3d.numpy.transforms.unproject_gl

@overload
def project_cv(points: numpy_.ndarray, extrinsics: numpy_.ndarray = None, intrinsics: numpy_.ndarray = None) -> Tuple[numpy_.ndarray, numpy_.ndarray]:
    """Project 3D points to 2D following the OpenCV convention

Args:
    points (np.ndarray): [..., N, 3] or [..., N, 4] 3D points to project, if the last
        dimension is 4, the points are assumed to be in homogeneous coordinates
    extrinsics (np.ndarray): [..., 4, 4] extrinsics matrix
    intrinsics (np.ndarray): [..., 3, 3] intrinsics matrix

Returns:
    uv_coord (np.ndarray): [..., N, 2] uv coordinates, value ranging in [0, 1].
        The origin (0., 0.) is corresponding to the left & top
    linear_depth (np.ndarray): [..., N] linear depth"""
    utils3d.numpy.transforms.project_cv

@overload
def project_gl(points: numpy_.ndarray, model: numpy_.ndarray = None, view: numpy_.ndarray = None, perspective: numpy_.ndarray = None) -> Tuple[numpy_.ndarray, numpy_.ndarray]:
    """Project 3D points to 2D following the OpenGL convention (except for row major matrice)

Args:
    points (np.ndarray): [..., N, 3] or [..., N, 4] 3D points to project, if the last 
        dimension is 4, the points are assumed to be in homogeneous coordinates
    model (np.ndarray): [..., 4, 4] model matrix
    view (np.ndarray): [..., 4, 4] view matrix
    perspective (np.ndarray): [..., 4, 4] perspective matrix

Returns:
    scr_coord (np.ndarray): [..., N, 3] screen space coordinates, value ranging in [0, 1].
        The origin (0., 0., 0.) is corresponding to the left & bottom & nearest
    linear_depth (np.ndarray): [..., N] linear depth"""
    utils3d.numpy.transforms.project_gl

@overload
def quaternion_to_matrix(quaternion: numpy_.ndarray, eps: float = 1e-12) -> numpy_.ndarray:
    """Converts a batch of quaternions (w, x, y, z) to rotation matrices

Args:
    quaternion (np.ndarray): shape (..., 4), the quaternions to convert

Returns:
    np.ndarray: shape (..., 3, 3), the rotation matrices corresponding to the given quaternions"""
    utils3d.numpy.transforms.quaternion_to_matrix

@overload
def axis_angle_to_matrix(axis_angle: numpy_.ndarray, eps: float = 1e-12) -> numpy_.ndarray:
    """Convert axis-angle representation (rotation vector) to rotation matrix, whose direction is the axis of rotation and length is the angle of rotation

Args:
    axis_angle (np.ndarray): shape (..., 3), axis-angle vcetors

Returns:
    np.ndarray: shape (..., 3, 3) The rotation matrices for the given axis-angle parameters"""
    utils3d.numpy.transforms.axis_angle_to_matrix

@overload
def matrix_to_quaternion(rot_mat: numpy_.ndarray, eps: float = 1e-12) -> numpy_.ndarray:
    """Convert 3x3 rotation matrix to quaternion (w, x, y, z)

Args:
    rot_mat (np.ndarray): shape (..., 3, 3), the rotation matrices to convert

Returns:
    np.ndarray: shape (..., 4), the quaternions corresponding to the given rotation matrices"""
    utils3d.numpy.transforms.matrix_to_quaternion

@overload
def extrinsics_to_essential(extrinsics: numpy_.ndarray):
    """extrinsics matrix `[[R, t] [0, 0, 0, 1]]` such that `x' = R (x - t)` to essential matrix such that `x' E x = 0`

Args:
    extrinsics (np.ndaray): [..., 4, 4] extrinsics matrix

Returns:
    (np.ndaray): [..., 3, 3] essential matrix"""
    utils3d.numpy.transforms.extrinsics_to_essential

@overload
def euler_axis_angle_rotation(axis: str, angle: numpy_.ndarray) -> numpy_.ndarray:
    """Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.

Args:
    axis: Axis label "X" or "Y or "Z".
    angle: any shape tensor of Euler angles in radians

Returns:
    Rotation matrices as tensor of shape (..., 3, 3)."""
    utils3d.numpy.transforms.euler_axis_angle_rotation

@overload
def euler_angles_to_matrix(euler_angles: numpy_.ndarray, convention: str = 'XYZ') -> numpy_.ndarray:
    """Convert rotations given as Euler angles in radians to rotation matrices.

Args:
    euler_angles: Euler angles in radians as ndarray of shape (..., 3), XYZ
    convention: permutation of "X", "Y" or "Z", representing the order of Euler rotations to apply.

Returns:
    Rotation matrices as ndarray of shape (..., 3, 3)."""
    utils3d.numpy.transforms.euler_angles_to_matrix

@overload
def skew_symmetric(v: numpy_.ndarray):
    """Skew symmetric matrix from a 3D vector"""
    utils3d.numpy.transforms.skew_symmetric

@overload
def rotation_matrix_from_vectors(v1: numpy_.ndarray, v2: numpy_.ndarray):
    """Rotation matrix that rotates v1 to v2"""
    utils3d.numpy.transforms.rotation_matrix_from_vectors

@overload
def ray_intersection(p1: numpy_.ndarray, d1: numpy_.ndarray, p2: numpy_.ndarray, d2: numpy_.ndarray):
    """Compute the intersection/closest point of two D-dimensional rays
If the rays are intersecting, the closest point is the intersection point.

Args:
    p1 (np.ndarray): (..., D) origin of ray 1
    d1 (np.ndarray): (..., D) direction of ray 1
    p2 (np.ndarray): (..., D) origin of ray 2
    d2 (np.ndarray): (..., D) direction of ray 2

Returns:
    (np.ndarray): (..., N) intersection point"""
    utils3d.numpy.transforms.ray_intersection

@overload
def se3_matrix(R: numpy_.ndarray, t: numpy_.ndarray) -> numpy_.ndarray:
    """Convert rotation matrix and translation vector to 4x4 transformation matrix.

Args:
    R (np.ndarray): [..., 3, 3] rotation matrix
    t (np.ndarray): [..., 3] translation vector

Returns:
    np.ndarray: [..., 4, 4] transformation matrix"""
    utils3d.numpy.transforms.se3_matrix

@overload
def slerp_quaternion(q1: numpy_.ndarray, q2: numpy_.ndarray, t: numpy_.ndarray) -> numpy_.ndarray:
    """Spherical linear interpolation between two unit quaternions.

Args:
    q1 (np.ndarray): [..., d] unit vector 1
    q2 (np.ndarray): [..., d] unit vector 2
    t (np.ndarray): [...] interpolation parameter in [0, 1]

Returns:
    np.ndarray: [..., 3] interpolated unit vector"""
    utils3d.numpy.transforms.slerp_quaternion

@overload
def slerp_vector(v1: numpy_.ndarray, v2: numpy_.ndarray, t: numpy_.ndarray) -> numpy_.ndarray:
    """Spherical linear interpolation between two unit vectors. The vectors are assumed to be normalized.

Args:
    v1 (np.ndarray): [..., d] unit vector 1
    v2 (np.ndarray): [..., d] unit vector 2
    t (np.ndarray): [...] interpolation parameter in [0, 1]

Returns:
    np.ndarray: [..., d] interpolated unit vector"""
    utils3d.numpy.transforms.slerp_vector

@overload
def lerp(x1: numpy_.ndarray, x2: numpy_.ndarray, t: numpy_.ndarray) -> numpy_.ndarray:
    """Linear interpolation between two vectors.

Args:
    x1 (np.ndarray): [..., d] vector 1
    x2 (np.ndarray): [..., d] vector 2
    t (np.ndarray): [...] interpolation parameter. [0, 1] for interpolation between x1 and x2, otherwise for extrapolation.

Returns:
    np.ndarray: [..., d] interpolated vector"""
    utils3d.numpy.transforms.lerp

@overload
def lerp_se3_matrix(T1: numpy_.ndarray, T2: numpy_.ndarray, t: numpy_.ndarray) -> numpy_.ndarray:
    """Linear interpolation between two SE(3) matrices.

Args:
    T1 (np.ndarray): [..., 4, 4] SE(3) matrix 1
    T2 (np.ndarray): [..., 4, 4] SE(3) matrix 2
    t (np.ndarray): [...] interpolation parameter in [0, 1]

Returns:
    np.ndarray: [..., 4, 4] interpolated SE(3) matrix"""
    utils3d.numpy.transforms.lerp_se3_matrix

@overload
def piecewise_lerp(x: numpy_.ndarray, t: numpy_.ndarray, s: numpy_.ndarray, extrapolation_mode: Literal['constant', 'linear'] = 'constant') -> numpy_.ndarray:
    """Linear spline interpolation.

### Parameters:
- `x`: np.ndarray, shape (n, d): the values of data points.
- `t`: np.ndarray, shape (n,): the times of the data points.
- `s`: np.ndarray, shape (m,): the times to be interpolated.
- `extrapolation_mode`: str, the mode of extrapolation. 'constant' means extrapolate the boundary values, 'linear' means extrapolate linearly.

### Returns:
- `y`: np.ndarray, shape (..., m, d): the interpolated values."""
    utils3d.numpy.transforms.piecewise_lerp

@overload
def piecewise_lerp_se3_matrix(T: numpy_.ndarray, t: numpy_.ndarray, s: numpy_.ndarray, extrapolation_mode: Literal['constant', 'linear'] = 'constant') -> numpy_.ndarray:
    """Linear spline interpolation for SE(3) matrices.

### Parameters:
- `T`: np.ndarray, shape (n, 4, 4): the SE(3) matrices.
- `t`: np.ndarray, shape (n,): the times of the data points.
- `s`: np.ndarray, shape (m,): the times to be interpolated.
- `extrapolation_mode`: str, the mode of extrapolation. 'constant' means extrapolate the boundary values, 'linear' means extrapolate linearly.

### Returns:
- `T_interp`: np.ndarray, shape (..., m, 4, 4): the interpolated SE(3) matrices."""
    utils3d.numpy.transforms.piecewise_lerp_se3_matrix

@overload
def apply_transform(T: numpy_.ndarray, x: numpy_.ndarray) -> numpy_.ndarray:
    """Apply SE(3) transformation to a point or a set of points.

### Parameters:
- `T`: np.ndarray, shape (..., 4, 4): the SE(3) matrix.
- `x`: np.ndarray, shape (..., 3): the point or a set of points to be transformed.

### Returns:
- `x_transformed`: np.ndarray, shape (..., 3): the transformed point or a set of points."""
    utils3d.numpy.transforms.apply_transform

@overload
def linear_spline_interpolate(x: numpy_.ndarray, t: numpy_.ndarray, s: numpy_.ndarray, extrapolation_mode: Literal['constant', 'linear'] = 'constant') -> numpy_.ndarray:
    """Linear spline interpolation.

### Parameters:
- `x`: np.ndarray, shape (n, d): the values of data points.
- `t`: np.ndarray, shape (n,): the times of the data points.
- `s`: np.ndarray, shape (m,): the times to be interpolated.
- `extrapolation_mode`: str, the mode of extrapolation. 'constant' means extrapolate the boundary values, 'linear' means extrapolate linearly.

### Returns:
- `y`: np.ndarray, shape (..., m, d): the interpolated values."""
    utils3d.numpy.spline.linear_spline_interpolate

@overload
def RastContext(*args, **kwargs):
    utils3d.numpy.rasterization.RastContext

@overload
def rasterize_triangle_faces(ctx: utils3d.numpy.rasterization.RastContext, vertices: numpy_.ndarray, faces: numpy_.ndarray, attr: numpy_.ndarray, width: int, height: int, transform: numpy_.ndarray = None, cull_backface: bool = True, return_depth: bool = False, image: numpy_.ndarray = None, depth: numpy_.ndarray = None) -> Tuple[numpy_.ndarray, numpy_.ndarray]:
    """Rasterize vertex attribute.

Args:
    vertices (np.ndarray): [N, 3]
    faces (np.ndarray): [T, 3]
    attr (np.ndarray): [N, C]
    width (int): width of rendered image
    height (int): height of rendered image
    transform (np.ndarray): [4, 4] model-view-projection transformation matrix. 
    cull_backface (bool): whether to cull backface
    image: (np.ndarray): [H, W, C] background image
    depth: (np.ndarray): [H, W] background depth

Returns:
    image (np.ndarray): [H, W, C] rendered image
    depth (np.ndarray): [H, W] screen space depth, ranging from 0 to 1. If return_depth is False, it is None."""
    utils3d.numpy.rasterization.rasterize_triangle_faces

@overload
def rasterize_edges(ctx: utils3d.numpy.rasterization.RastContext, vertices: numpy_.ndarray, edges: numpy_.ndarray, attr: numpy_.ndarray, width: int, height: int, transform: numpy_.ndarray = None, line_width: float = 1.0, return_depth: bool = False, image: numpy_.ndarray = None, depth: numpy_.ndarray = None) -> Tuple[numpy_.ndarray, ...]:
    """Rasterize vertex attribute.

Args:
    vertices (np.ndarray): [N, 3]
    faces (np.ndarray): [T, 3]
    attr (np.ndarray): [N, C]
    width (int): width of rendered image
    height (int): height of rendered image
    transform (np.ndarray): [4, 4] model-view-projection matrix
    line_width (float): width of line. Defaults to 1.0. NOTE: Values other than 1.0 may not work across all platforms.
    cull_backface (bool): whether to cull backface

Returns:
    image (np.ndarray): [H, W, C] rendered image
    depth (np.ndarray): [H, W] screen space depth, ranging from 0 to 1. If return_depth is False, it is None."""
    utils3d.numpy.rasterization.rasterize_edges

@overload
def texture(ctx: utils3d.numpy.rasterization.RastContext, uv: numpy_.ndarray, texture: numpy_.ndarray, interpolation: str = 'linear', wrap: str = 'clamp') -> numpy_.ndarray:
    """Given an UV image, texturing from the texture map"""
    utils3d.numpy.rasterization.texture

@overload
def warp_image_by_depth(ctx: utils3d.numpy.rasterization.RastContext, src_depth: numpy_.ndarray, src_image: numpy_.ndarray = None, width: int = None, height: int = None, *, extrinsics_src: numpy_.ndarray = None, extrinsics_tgt: numpy_.ndarray = None, intrinsics_src: numpy_.ndarray = None, intrinsics_tgt: numpy_.ndarray = None, near: float = 0.1, far: float = 100.0, cull_backface: bool = True, ssaa: int = 1, return_depth: bool = False) -> Tuple[numpy_.ndarray, ...]:
    """Warp image by depth map.

Args:
    ctx (RastContext): rasterizer context
    src_depth (np.ndarray): [H, W]
    src_image (np.ndarray, optional): [H, W, C]. The image to warp. Defaults to None (use uv coordinates).
    width (int, optional): width of the output image. None to use depth map width. Defaults to None.
    height (int, optional): height of the output image. None to use depth map height. Defaults to None.
    extrinsics_src (np.ndarray, optional): extrinsics matrix of the source camera. Defaults to None (identity).
    extrinsics_tgt (np.ndarray, optional): extrinsics matrix of the target camera. Defaults to None (identity).
    intrinsics_src (np.ndarray, optional): intrinsics matrix of the source camera. Defaults to None (use the same as intrinsics_tgt).
    intrinsics_tgt (np.ndarray, optional): intrinsics matrix of the target camera. Defaults to None (use the same as intrinsics_src).
    cull_backface (bool, optional): whether to cull backface. Defaults to True.
    ssaa (int, optional): super sampling anti-aliasing. Defaults to 1.

Returns:
    tgt_image (np.ndarray): [H, W, C] warped image (or uv coordinates if image is None).
    tgt_depth (np.ndarray): [H, W] screen space depth, ranging from 0 to 1. If return_depth is False, it is None."""
    utils3d.numpy.rasterization.warp_image_by_depth

@overload
def test_rasterization(ctx: utils3d.numpy.rasterization.RastContext):
    """Test if rasterization works. It will render a cube with random colors and save it as a CHECKME.png file."""
    utils3d.numpy.rasterization.test_rasterization

@overload
def triangulate(faces: torch_.Tensor, vertices: torch_.Tensor = None, backslash: bool = None) -> torch_.Tensor:
    """Triangulate a polygonal mesh.

Args:
    faces (torch.Tensor): [..., L, P] polygonal faces
    vertices (torch.Tensor, optional): [..., N, 3] 3-dimensional vertices.
        If given, the triangulation is performed according to the distance
        between vertices. Defaults to None.
    backslash (torch.Tensor, optional): [..., L] boolean array indicating
        how to triangulate the quad faces. Defaults to None.


Returns:
    (torch.Tensor): [L * (P - 2), 3] triangular faces"""
    utils3d.torch.mesh.triangulate

@overload
def compute_face_normal(vertices: torch_.Tensor, faces: torch_.Tensor) -> torch_.Tensor:
    """Compute face normals of a triangular mesh

Args:
    vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices
    faces (torch.Tensor): [..., T, 3] triangular face indices

Returns:
    normals (torch.Tensor): [..., T, 3] face normals"""
    utils3d.torch.mesh.compute_face_normal

@overload
def compute_face_angles(vertices: torch_.Tensor, faces: torch_.Tensor) -> torch_.Tensor:
    """Compute face angles of a triangular mesh

Args:
    vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices
    faces (torch.Tensor): [T, 3] triangular face indices

Returns:
    angles (torch.Tensor): [..., T, 3] face angles"""
    utils3d.torch.mesh.compute_face_angles

@overload
def compute_vertex_normal(vertices: torch_.Tensor, faces: torch_.Tensor, face_normal: torch_.Tensor = None) -> torch_.Tensor:
    """Compute vertex normals of a triangular mesh by averaging neightboring face normals

Args:
    vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices
    faces (torch.Tensor): [T, 3] triangular face indices
    face_normal (torch.Tensor, optional): [..., T, 3] face normals.
        None to compute face normals from vertices and faces. Defaults to None.

Returns:
    normals (torch.Tensor): [..., N, 3] vertex normals"""
    utils3d.torch.mesh.compute_vertex_normal

@overload
def compute_vertex_normal_weighted(vertices: torch_.Tensor, faces: torch_.Tensor, face_normal: torch_.Tensor = None) -> torch_.Tensor:
    """Compute vertex normals of a triangular mesh by weighted sum of neightboring face normals
according to the angles

Args:
    vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices
    faces (torch.Tensor): [T, 3] triangular face indices
    face_normal (torch.Tensor, optional): [..., T, 3] face normals.
        None to compute face normals from vertices and faces. Defaults to None.

Returns:
    normals (torch.Tensor): [..., N, 3] vertex normals"""
    utils3d.torch.mesh.compute_vertex_normal_weighted

@overload
def remove_unreferenced_vertices(faces: torch_.Tensor, *vertice_attrs, return_indices: bool = False) -> Tuple[torch_.Tensor, ...]:
    """Remove unreferenced vertices of a mesh. 
Unreferenced vertices are removed, and the face indices are updated accordingly.

Args:
    faces (torch.Tensor): [T, P] face indices
    *vertice_attrs: vertex attributes

Returns:
    faces (torch.Tensor): [T, P] face indices
    *vertice_attrs: vertex attributes
    indices (torch.Tensor, optional): [N] indices of vertices that are kept. Defaults to None."""
    utils3d.torch.mesh.remove_unreferenced_vertices

@overload
def remove_corrupted_faces(faces: torch_.Tensor) -> torch_.Tensor:
    """Remove corrupted faces (faces with duplicated vertices)

Args:
    faces (torch.Tensor): [T, 3] triangular face indices

Returns:
    torch.Tensor: [T_, 3] triangular face indices"""
    utils3d.torch.mesh.remove_corrupted_faces

@overload
def merge_duplicate_vertices(vertices: torch_.Tensor, faces: torch_.Tensor, tol: float = 1e-06) -> Tuple[torch_.Tensor, torch_.Tensor]:
    """Merge duplicate vertices of a triangular mesh. 
Duplicate vertices are merged by selecte one of them, and the face indices are updated accordingly.

Args:
    vertices (torch.Tensor): [N, 3] 3-dimensional vertices
    faces (torch.Tensor): [T, 3] triangular face indices
    tol (float, optional): tolerance for merging. Defaults to 1e-6.

Returns:
    vertices (torch.Tensor): [N_, 3] 3-dimensional vertices
    faces (torch.Tensor): [T, 3] triangular face indices"""
    utils3d.torch.mesh.merge_duplicate_vertices

@overload
def subdivide_mesh_simple(vertices: torch_.Tensor, faces: torch_.Tensor, n: int = 1) -> Tuple[torch_.Tensor, torch_.Tensor]:
    """Subdivide a triangular mesh by splitting each triangle into 4 smaller triangles.
NOTE: All original vertices are kept, and new vertices are appended to the end of the vertex list.

Args:
    vertices (torch.Tensor): [N, 3] 3-dimensional vertices
    faces (torch.Tensor): [T, 3] triangular face indices
    n (int, optional): number of subdivisions. Defaults to 1.

Returns:
    vertices (torch.Tensor): [N_, 3] subdivided 3-dimensional vertices
    faces (torch.Tensor): [4 * T, 3] subdivided triangular face indices"""
    utils3d.torch.mesh.subdivide_mesh_simple

@overload
def compute_face_tbn(pos: torch_.Tensor, faces_pos: torch_.Tensor, uv: torch_.Tensor, faces_uv: torch_.Tensor, eps: float = 1e-07) -> torch_.Tensor:
    """compute TBN matrix for each face

Args:
    pos (torch.Tensor): shape (..., N_pos, 3), positions
    faces_pos (torch.Tensor): shape(T, 3) 
    uv (torch.Tensor): shape (..., N_uv, 3) uv coordinates, 
    faces_uv (torch.Tensor): shape(T, 3) 
    
Returns:
    torch.Tensor: (..., T, 3, 3) TBN matrix for each face. Note TBN vectors are normalized but not necessarily orthognal"""
    utils3d.torch.mesh.compute_face_tbn

@overload
def compute_vertex_tbn(faces_topo: torch_.Tensor, pos: torch_.Tensor, faces_pos: torch_.Tensor, uv: torch_.Tensor, faces_uv: torch_.Tensor) -> torch_.Tensor:
    """compute TBN matrix for each face

Args:
    faces_topo (torch.Tensor): (T, 3), face indice of topology
    pos (torch.Tensor): shape (..., N_pos, 3), positions
    faces_pos (torch.Tensor): shape(T, 3) 
    uv (torch.Tensor): shape (..., N_uv, 3) uv coordinates, 
    faces_uv (torch.Tensor): shape(T, 3) 
    
Returns:
    torch.Tensor: (..., V, 3, 3) TBN matrix for each face. Note TBN vectors are normalized but not necessarily orthognal"""
    utils3d.torch.mesh.compute_vertex_tbn

@overload
def laplacian(vertices: torch_.Tensor, faces: torch_.Tensor, weight: str = 'uniform') -> torch_.Tensor:
    """Laplacian smooth with cotangent weights

Args:
    vertices (torch.Tensor): shape (..., N, 3)
    faces (torch.Tensor): shape (T, 3)
    weight (str): 'uniform' or 'cotangent'"""
    utils3d.torch.mesh.laplacian

@overload
def laplacian_smooth_mesh(vertices: torch_.Tensor, faces: torch_.Tensor, weight: str = 'uniform', times: int = 5) -> torch_.Tensor:
    """Laplacian smooth with cotangent weights

Args:
    vertices (torch.Tensor): shape (..., N, 3)
    faces (torch.Tensor): shape (T, 3)
    weight (str): 'uniform' or 'cotangent'"""
    utils3d.torch.mesh.laplacian_smooth_mesh

@overload
def taubin_smooth_mesh(vertices: torch_.Tensor, faces: torch_.Tensor, lambda_: float = 0.5, mu_: float = -0.51) -> torch_.Tensor:
    """Taubin smooth mesh

Args:
    vertices (torch.Tensor): _description_
    faces (torch.Tensor): _description_
    lambda_ (float, optional): _description_. Defaults to 0.5.
    mu_ (float, optional): _description_. Defaults to -0.51.

Returns:
    torch.Tensor: _description_"""
    utils3d.torch.mesh.taubin_smooth_mesh

@overload
def laplacian_hc_smooth_mesh(vertices: torch_.Tensor, faces: torch_.Tensor, times: int = 5, alpha: float = 0.5, beta: float = 0.5, weight: str = 'uniform'):
    """HC algorithm from Improved Laplacian Smoothing of Noisy Surface Meshes by J.Vollmer et al.
    """
    utils3d.torch.mesh.laplacian_hc_smooth_mesh

@overload
def get_rays(extrinsics: torch_.Tensor, intrinsics: torch_.Tensor, uv: torch_.Tensor) -> Tuple[torch_.Tensor, torch_.Tensor]:
    """Args:
    extrinsics: (..., 4, 4) extrinsics matrices.
    intrinsics: (..., 3, 3) intrinsics matrices.
    uv: (..., n_rays, 2) uv coordinates of the rays. 

Returns:
    rays_o: (..., 1,      3) ray origins
    rays_d: (..., n_rays, 3) ray directions. 
        NOTE: ray directions are NOT normalized. They actuallys makes rays_o + rays_d * z = world coordinates, where z is the depth."""
    utils3d.torch.nerf.get_rays

@overload
def get_image_rays(extrinsics: torch_.Tensor, intrinsics: torch_.Tensor, width: int, height: int) -> Tuple[torch_.Tensor, torch_.Tensor]:
    """Args:
    extrinsics: (..., 4, 4) extrinsics matrices.
    intrinsics: (..., 3, 3) intrinsics matrices.
    width: width of the image.
    height: height of the image.

Returns:
    rays_o: (..., 1,      1,     3) ray origins
    rays_d: (..., height, width, 3) ray directions. 
        NOTE: ray directions are NOT normalized. They actuallys makes rays_o + rays_d * z = world coordinates, where z is the depth."""
    utils3d.torch.nerf.get_image_rays

@overload
def get_mipnerf_cones(rays_o: torch_.Tensor, rays_d: torch_.Tensor, z_vals: torch_.Tensor, pixel_width: torch_.Tensor) -> Tuple[torch_.Tensor, torch_.Tensor]:
    """Args:
    rays_o: (..., n_rays, 3) ray origins
    rays_d: (..., n_rays, 3) ray directions.
    z_vals: (..., n_rays, n_samples) z values.
    pixel_width: (...) pixel width. = 1 / (normalized focal length * width)

Returns:
    mu: (..., n_rays, n_samples, 3) cone mu.
    sigma: (..., n_rays, n_samples, 3, 3) cone sigma."""
    utils3d.torch.nerf.get_mipnerf_cones

@overload
def volume_rendering(color: torch_.Tensor, sigma: torch_.Tensor, z_vals: torch_.Tensor, ray_length: torch_.Tensor, rgb: bool = True, depth: bool = True) -> Tuple[torch_.Tensor, torch_.Tensor, torch_.Tensor]:
    """Given color, sigma and z_vals (linear depth of the sampling points), render the volume.

NOTE: By default, color and sigma should have one less sample than z_vals, in correspondence with the average value in intervals.
If queried color are aligned with z_vals, we use trapezoidal rule to calculate the average values in intervals.

Args:
    color: (..., n_samples or n_samples - 1, 3) color values.
    sigma: (..., n_samples or n_samples - 1) density values.
    z_vals: (..., n_samples) z values.
    ray_length: (...) length of the ray

Returns:
    rgb: (..., 3) rendered color values.
    depth: (...) rendered depth values.
    weights (..., n_samples) weights."""
    utils3d.torch.nerf.volume_rendering

@overload
def bin_sample(size: Union[torch_.Size, Tuple[int, ...]], n_samples: int, min_value: numbers.Number, max_value: numbers.Number, spacing: Literal['linear', 'inverse_linear'], dtype: torch_.dtype = None, device: torch_.device = None) -> torch_.Tensor:
    """Uniformly (or uniformly in inverse space) sample z values in `n_samples` bins in range [min_value, max_value].
Args:
    size: size of the rays
    n_samples: number of samples to be sampled, also the number of bins
    min_value: minimum value of the range
    max_value: maximum value of the range
    space: 'linear' or 'inverse_linear'. If 'inverse_linear', the sampling is uniform in inverse space.

Returns:
    z_rand: (*size, n_samples) sampled z values, sorted in ascending order."""
    utils3d.torch.nerf.bin_sample

@overload
def importance_sample(z_vals: torch_.Tensor, weights: torch_.Tensor, n_samples: int) -> Tuple[torch_.Tensor, torch_.Tensor]:
    """Importance sample z values.

NOTE: By default, weights should have one less sample than z_vals, in correspondence with the intervals.
If weights has the same number of samples as z_vals, we use trapezoidal rule to calculate the average weights in intervals.

Args:
    z_vals: (..., n_rays, n_input_samples) z values, sorted in ascending order.
    weights: (..., n_rays, n_input_samples or n_input_samples - 1) weights.
    n_samples: number of output samples for importance sampling.

Returns:
    z_importance: (..., n_rays, n_samples) importance sampled z values, unsorted."""
    utils3d.torch.nerf.importance_sample

@overload
def nerf_render_rays(nerf: Union[Callable[[torch_.Tensor, torch_.Tensor], Tuple[torch_.Tensor, torch_.Tensor]], Tuple[Callable[[torch_.Tensor], Tuple[torch_.Tensor, torch_.Tensor]], Callable[[torch_.Tensor], Tuple[torch_.Tensor, torch_.Tensor]]]], rays_o: torch_.Tensor, rays_d: torch_.Tensor, *, return_dict: bool = False, n_coarse: int = 64, n_fine: int = 64, near: float = 0.1, far: float = 100.0, z_spacing: Literal['linear', 'inverse_linear'] = 'linear'):
    """NeRF rendering of rays. Note that it supports arbitrary batch dimensions (denoted as `...`)

Args:
    nerf: nerf model, which takes (points, directions) as input and returns (color, density) as output.
        If nerf is a tuple, it should be (nerf_coarse, nerf_fine), where nerf_coarse and nerf_fine are two nerf models for coarse and fine stages respectively.
        
        nerf args:
            points: (..., n_rays, n_samples, 3)
            directions: (..., n_rays, n_samples, 3)
        nerf returns:
            color: (..., n_rays, n_samples, 3) color values.
            density: (..., n_rays, n_samples) density values.
            
    rays_o: (..., n_rays, 3) ray origins
    rays_d: (..., n_rays, 3) ray directions.
    pixel_width: (..., n_rays) pixel width. How to compute? pixel_width = 1 / (normalized focal length * width)

Returns 
    if return_dict is False, return rendered rgb and depth for short cut. (If there are separate coarse and fine results, return fine results)
        rgb: (..., n_rays, 3) rendered color values. 
        depth: (..., n_rays) rendered depth values.
    else, return a dict. If `n_fine == 0` or `nerf` is a single model, the dict only contains coarse results:
    ```
    {'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..}
    ```
    If there are two models for coarse and fine stages, the dict contains both coarse and fine results:
    ```
    {
        "coarse": {'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..},
        "fine": {'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..}
    }
    ```"""
    utils3d.torch.nerf.nerf_render_rays

@overload
def mipnerf_render_rays(mipnerf: Callable[[torch_.Tensor, torch_.Tensor, torch_.Tensor], Tuple[torch_.Tensor, torch_.Tensor]], rays_o: torch_.Tensor, rays_d: torch_.Tensor, pixel_width: torch_.Tensor, *, return_dict: bool = False, n_coarse: int = 64, n_fine: int = 64, uniform_ratio: float = 0.4, near: float = 0.1, far: float = 100.0, z_spacing: Literal['linear', 'inverse_linear'] = 'linear') -> Union[Tuple[torch_.Tensor, torch_.Tensor], Dict[str, torch_.Tensor]]:
    """MipNeRF rendering.

Args:
    mipnerf: mipnerf model, which takes (points_mu, points_sigma) as input and returns (color, density) as output.

        mipnerf args:
            points_mu: (..., n_rays, n_samples, 3) cone mu.
            points_sigma: (..., n_rays, n_samples, 3, 3) cone sigma.
            directions: (..., n_rays, n_samples, 3)
        mipnerf returns:
            color: (..., n_rays, n_samples, 3) color values.
            density: (..., n_rays, n_samples) density values.

    rays_o: (..., n_rays, 3) ray origins
    rays_d: (..., n_rays, 3) ray directions.
    pixel_width: (..., n_rays) pixel width. How to compute? pixel_width = 1 / (normalized focal length * width)

Returns 
    if return_dict is False, return rendered results only: (If `n_fine == 0`, return coarse results, otherwise return fine results)
        rgb: (..., n_rays, 3) rendered color values. 
        depth: (..., n_rays) rendered depth values.
    else, return a dict. If `n_fine == 0`, the dict only contains coarse results:
    ```
    {'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..}
    ```
    If n_fine > 0, the dict contains both coarse and fine results :
    ```
    {
        "coarse": {'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..},
        "fine": {'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..}
    }
    ```"""
    utils3d.torch.nerf.mipnerf_render_rays

@overload
def nerf_render_view(nerf: torch_.Tensor, extrinsics: torch_.Tensor, intrinsics: torch_.Tensor, width: int, height: int, *, patchify: bool = False, patch_size: Tuple[int, int] = (64, 64), **options: Dict[str, Any]) -> Tuple[torch_.Tensor, torch_.Tensor]:
    """NeRF rendering of views. Note that it supports arbitrary batch dimensions (denoted as `...`)

Args:
    extrinsics: (..., 4, 4) extrinsics matrice of the rendered views
    intrinsics (optional): (..., 3, 3) intrinsics matrice of the rendered views.
    width (optional): image width of the rendered views.
    height (optional): image height of the rendered views.
    patchify (optional): If the image is too large, render it patch by patch
    **options: rendering options.

Returns:
    rgb: (..., channels, height, width) rendered color values.
    depth: (..., height, width) rendered depth values."""
    utils3d.torch.nerf.nerf_render_view

@overload
def mipnerf_render_view(mipnerf: torch_.Tensor, extrinsics: torch_.Tensor, intrinsics: torch_.Tensor, width: int, height: int, *, patchify: bool = False, patch_size: Tuple[int, int] = (64, 64), **options: Dict[str, Any]) -> Tuple[torch_.Tensor, torch_.Tensor]:
    """MipNeRF rendering of views. Note that it supports arbitrary batch dimensions (denoted as `...`)

Args:
    extrinsics: (..., 4, 4) extrinsics matrice of the rendered views
    intrinsics (optional): (..., 3, 3) intrinsics matrice of the rendered views.
    width (optional): image width of the rendered views.
    height (optional): image height of the rendered views.
    patchify (optional): If the image is too large, render it patch by patch
    **options: rendering options.

Returns:
    rgb: (..., 3, height, width) rendered color values.
    depth: (..., height, width) rendered depth values."""
    utils3d.torch.nerf.mipnerf_render_view

@overload
def InstantNGP(view_dependent: bool = True, base_resolution: int = 16, finest_resolution: int = 2048, n_levels: int = 16, num_layers_density: int = 2, hidden_dim_density: int = 64, num_layers_color: int = 3, hidden_dim_color: int = 64, log2_hashmap_size: int = 19, bound: float = 1.0, color_channels: int = 3):
    """An implementation of InstantNGP, Müller et. al., https://nvlabs.github.io/instant-ngp/.
Requires `tinycudann` package.
Install it by:
```
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
```"""
    utils3d.torch.nerf.InstantNGP

@overload
def sliding_window_1d(x: torch_.Tensor, window_size: int, stride: int = 1, dim: int = -1) -> torch_.Tensor:
    """Sliding window view of the input tensor. The dimension of the sliding window is appended to the end of the input tensor's shape.
NOTE: Since Pytorch has `unfold` function, 1D sliding window view is just a wrapper of it."""
    utils3d.torch.utils.sliding_window_1d

@overload
def sliding_window_2d(x: torch_.Tensor, window_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]], dim: Union[int, Tuple[int, int]] = (-2, -1)) -> torch_.Tensor:
    utils3d.torch.utils.sliding_window_2d

@overload
def sliding_window_nd(x: torch_.Tensor, window_size: Tuple[int, ...], stride: Tuple[int, ...], dim: Tuple[int, ...]) -> torch_.Tensor:
    utils3d.torch.utils.sliding_window_nd

@overload
def image_uv(height: int, width: int, left: int = None, top: int = None, right: int = None, bottom: int = None, device: torch_.device = None, dtype: torch_.dtype = None) -> torch_.Tensor:
    """Get image space UV grid, ranging in [0, 1]. 

>>> image_uv(10, 10):
[[[0.05, 0.05], [0.15, 0.05], ..., [0.95, 0.05]],
 [[0.05, 0.15], [0.15, 0.15], ..., [0.95, 0.15]],
  ...             ...                  ...
 [[0.05, 0.95], [0.15, 0.95], ..., [0.95, 0.95]]]

Args:
    width (int): image width
    height (int): image height

Returns:
    np.ndarray: shape (height, width, 2)"""
    utils3d.torch.utils.image_uv

@overload
def image_pixel_center(height: int, width: int, left: int = None, top: int = None, right: int = None, bottom: int = None, dtype: torch_.dtype = None, device: torch_.device = None) -> torch_.Tensor:
    """Get image pixel center coordinates, ranging in [0, width] and [0, height].
`image[i, j]` has pixel center coordinates `(j + 0.5, i + 0.5)`.

>>> image_pixel_center(10, 10):
[[[0.5, 0.5], [1.5, 0.5], ..., [9.5, 0.5]],
 [[0.5, 1.5], [1.5, 1.5], ..., [9.5, 1.5]],
  ...             ...                  ...
[[0.5, 9.5], [1.5, 9.5], ..., [9.5, 9.5]]]

Args:
    width (int): image width
    height (int): image height

Returns:
    np.ndarray: shape (height, width, 2)"""
    utils3d.torch.utils.image_pixel_center

@overload
def image_mesh(height: int, width: int, mask: torch_.Tensor = None, device: torch_.device = None, dtype: torch_.dtype = None) -> Tuple[torch_.Tensor, torch_.Tensor]:
    """Get a quad mesh regarding image pixel uv coordinates as vertices and image grid as faces.

Args:
    width (int): image width
    height (int): image height
    mask (np.ndarray, optional): binary mask of shape (height, width), dtype=bool. Defaults to None.

Returns:
    uv (np.ndarray): uv corresponding to pixels as described in image_uv()
    faces (np.ndarray): quad faces connecting neighboring pixels
    indices (np.ndarray, optional): indices of vertices in the original mesh"""
    utils3d.torch.utils.image_mesh

@overload
def chessboard(width: int, height: int, grid_size: int, color_a: torch_.Tensor, color_b: torch_.Tensor) -> torch_.Tensor:
    """get a chessboard image

Args:
    width (int): image width
    height (int): image height
    grid_size (int): size of chessboard grid
    color_a (torch.Tensor): shape (chanenls,), color of the grid at the top-left corner
    color_b (torch.Tensor): shape (chanenls,), color in complementary grids

Returns:
    image (torch.Tensor): shape (height, width, channels), chessboard image"""
    utils3d.torch.utils.chessboard

@overload
def depth_edge(depth: torch_.Tensor, atol: float = None, rtol: float = None, kernel_size: int = 3, mask: torch_.Tensor = None) -> torch_.BoolTensor:
    """Compute the edge mask of a depth map. The edge is defined as the pixels whose neighbors have a large difference in depth.

Args:
    depth (torch.Tensor): shape (..., height, width), linear depth map
    atol (float): absolute tolerance
    rtol (float): relative tolerance

Returns:
    edge (torch.Tensor): shape (..., height, width) of dtype torch.bool"""
    utils3d.torch.utils.depth_edge

@overload
def depth_aliasing(depth: torch_.Tensor, atol: float = None, rtol: float = None, kernel_size: int = 3, mask: torch_.Tensor = None) -> torch_.BoolTensor:
    """Compute the map that indicates the aliasing of a depth map. The aliasing is defined as the pixels which neither close to the maximum nor the minimum of its neighbors.
Args:
    depth (torch.Tensor): shape (..., height, width), linear depth map
    atol (float): absolute tolerance
    rtol (float): relative tolerance

Returns:
    edge (torch.Tensor): shape (..., height, width) of dtype torch.bool"""
    utils3d.torch.utils.depth_aliasing

@overload
def image_mesh_from_depth(depth: torch_.Tensor, extrinsics: torch_.Tensor = None, intrinsics: torch_.Tensor = None) -> Tuple[torch_.Tensor, torch_.Tensor]:
    utils3d.torch.utils.image_mesh_from_depth

@overload
def point_to_normal(point: torch_.Tensor, mask: torch_.Tensor = None) -> torch_.Tensor:
    """Calculate normal map from point map. Value range is [-1, 1]. Normal direction in OpenGL identity camera's coordinate system.

Args:
    point (torch.Tensor): shape (..., height, width, 3), point map
Returns:
    normal (torch.Tensor): shape (..., height, width, 3), normal map. """
    utils3d.torch.utils.point_to_normal

@overload
def depth_to_normal(depth: torch_.Tensor, intrinsics: torch_.Tensor, mask: torch_.Tensor = None) -> torch_.Tensor:
    """Calculate normal map from depth map. Value range is [-1, 1]. Normal direction in OpenGL identity camera's coordinate system.

Args:
    depth (torch.Tensor): shape (..., height, width), linear depth map
    intrinsics (torch.Tensor): shape (..., 3, 3), intrinsics matrix
Returns:
    normal (torch.Tensor): shape (..., 3, height, width), normal map. """
    utils3d.torch.utils.depth_to_normal

@overload
def masked_min(input: torch_.Tensor, mask: torch_.BoolTensor, dim: int = None, keepdim: bool = False) -> Union[torch_.Tensor, Tuple[torch_.Tensor, torch_.Tensor]]:
    """Similar to torch.min, but with mask
    """
    utils3d.torch.utils.masked_min

@overload
def masked_max(input: torch_.Tensor, mask: torch_.BoolTensor, dim: int = None, keepdim: bool = False) -> Union[torch_.Tensor, Tuple[torch_.Tensor, torch_.Tensor]]:
    """Similar to torch.max, but with mask
    """
    utils3d.torch.utils.masked_max

@overload
def bounding_rect(mask: torch_.BoolTensor):
    """get bounding rectangle of a mask

Args:
    mask (torch.Tensor): shape (..., height, width), mask

Returns:
    rect (torch.Tensor): shape (..., 4), bounding rectangle (left, top, right, bottom)"""
    utils3d.torch.utils.bounding_rect

@overload
def perspective(fov_y: Union[float, torch_.Tensor], aspect: Union[float, torch_.Tensor], near: Union[float, torch_.Tensor], far: Union[float, torch_.Tensor]) -> torch_.Tensor:
    """Get OpenGL perspective matrix

Args:
    fov_y (float | torch.Tensor): field of view in y axis
    aspect (float | torch.Tensor): aspect ratio
    near (float | torch.Tensor): near plane to clip
    far (float | torch.Tensor): far plane to clip

Returns:
    (torch.Tensor): [..., 4, 4] perspective matrix"""
    utils3d.torch.transforms.perspective

@overload
def perspective_from_fov(fov: Union[float, torch_.Tensor], width: Union[int, torch_.Tensor], height: Union[int, torch_.Tensor], near: Union[float, torch_.Tensor], far: Union[float, torch_.Tensor]) -> torch_.Tensor:
    """Get OpenGL perspective matrix from field of view in largest dimension

Args:
    fov (float | torch.Tensor): field of view in largest dimension
    width (int | torch.Tensor): image width
    height (int | torch.Tensor): image height
    near (float | torch.Tensor): near plane to clip
    far (float | torch.Tensor): far plane to clip

Returns:
    (torch.Tensor): [..., 4, 4] perspective matrix"""
    utils3d.torch.transforms.perspective_from_fov

@overload
def perspective_from_fov_xy(fov_x: Union[float, torch_.Tensor], fov_y: Union[float, torch_.Tensor], near: Union[float, torch_.Tensor], far: Union[float, torch_.Tensor]) -> torch_.Tensor:
    """Get OpenGL perspective matrix from field of view in x and y axis

Args:
    fov_x (float | torch.Tensor): field of view in x axis
    fov_y (float | torch.Tensor): field of view in y axis
    near (float | torch.Tensor): near plane to clip
    far (float | torch.Tensor): far plane to clip

Returns:
    (torch.Tensor): [..., 4, 4] perspective matrix"""
    utils3d.torch.transforms.perspective_from_fov_xy

@overload
def intrinsics_from_focal_center(fx: Union[float, torch_.Tensor], fy: Union[float, torch_.Tensor], cx: Union[float, torch_.Tensor], cy: Union[float, torch_.Tensor]) -> torch_.Tensor:
    """Get OpenCV intrinsics matrix

Args:
    focal_x (float | torch.Tensor): focal length in x axis
    focal_y (float | torch.Tensor): focal length in y axis
    cx (float | torch.Tensor): principal point in x axis
    cy (float | torch.Tensor): principal point in y axis

Returns:
    (torch.Tensor): [..., 3, 3] OpenCV intrinsics matrix"""
    utils3d.torch.transforms.intrinsics_from_focal_center

@overload
def intrinsics_from_fov(fov_max: Union[float, torch_.Tensor] = None, fov_min: Union[float, torch_.Tensor] = None, fov_x: Union[float, torch_.Tensor] = None, fov_y: Union[float, torch_.Tensor] = None, width: Union[int, torch_.Tensor] = None, height: Union[int, torch_.Tensor] = None) -> torch_.Tensor:
    """Get normalized OpenCV intrinsics matrix from given field of view.
You can provide either fov_max, fov_min, fov_x or fov_y

Args:
    width (int | torch.Tensor): image width
    height (int | torch.Tensor): image height
    fov_max (float | torch.Tensor): field of view in largest dimension
    fov_min (float | torch.Tensor): field of view in smallest dimension
    fov_x (float | torch.Tensor): field of view in x axis
    fov_y (float | torch.Tensor): field of view in y axis

Returns:
    (torch.Tensor): [..., 3, 3] OpenCV intrinsics matrix"""
    utils3d.torch.transforms.intrinsics_from_fov

@overload
def intrinsics_from_fov_xy(fov_x: Union[float, torch_.Tensor], fov_y: Union[float, torch_.Tensor]) -> torch_.Tensor:
    """Get OpenCV intrinsics matrix from field of view in x and y axis

Args:
    fov_x (float | torch.Tensor): field of view in x axis
    fov_y (float | torch.Tensor): field of view in y axis

Returns:
    (torch.Tensor): [..., 3, 3] OpenCV intrinsics matrix"""
    utils3d.torch.transforms.intrinsics_from_fov_xy

@overload
def view_look_at(eye: torch_.Tensor, look_at: torch_.Tensor, up: torch_.Tensor) -> torch_.Tensor:
    """Get OpenGL view matrix looking at something

Args:
    eye (torch.Tensor): [..., 3] the eye position
    look_at (torch.Tensor): [..., 3] the position to look at
    up (torch.Tensor): [..., 3] head up direction (y axis in screen space). Not necessarily othogonal to view direction

Returns:
    (torch.Tensor): [..., 4, 4], view matrix"""
    utils3d.torch.transforms.view_look_at

@overload
def extrinsics_look_at(eye: torch_.Tensor, look_at: torch_.Tensor, up: torch_.Tensor) -> torch_.Tensor:
    """Get OpenCV extrinsics matrix looking at something

Args:
    eye (torch.Tensor): [..., 3] the eye position
    look_at (torch.Tensor): [..., 3] the position to look at
    up (torch.Tensor): [..., 3] head up direction (-y axis in screen space). Not necessarily othogonal to view direction

Returns:
    (torch.Tensor): [..., 4, 4], extrinsics matrix"""
    utils3d.torch.transforms.extrinsics_look_at

@overload
def perspective_to_intrinsics(perspective: torch_.Tensor) -> torch_.Tensor:
    """OpenGL perspective matrix to OpenCV intrinsics

Args:
    perspective (torch.Tensor): [..., 4, 4] OpenGL perspective matrix

Returns:
    (torch.Tensor): shape [..., 3, 3] OpenCV intrinsics"""
    utils3d.torch.transforms.perspective_to_intrinsics

@overload
def intrinsics_to_perspective(intrinsics: torch_.Tensor, near: Union[float, torch_.Tensor], far: Union[float, torch_.Tensor]) -> torch_.Tensor:
    """OpenCV intrinsics to OpenGL perspective matrix

Args:
    intrinsics (torch.Tensor): [..., 3, 3] OpenCV intrinsics matrix
    near (float | torch.Tensor): [...] near plane to clip
    far (float | torch.Tensor): [...] far plane to clip
Returns:
    (torch.Tensor): [..., 4, 4] OpenGL perspective matrix"""
    utils3d.torch.transforms.intrinsics_to_perspective

@overload
def extrinsics_to_view(extrinsics: torch_.Tensor) -> torch_.Tensor:
    """OpenCV camera extrinsics to OpenGL view matrix

Args:
    extrinsics (torch.Tensor): [..., 4, 4] OpenCV camera extrinsics matrix

Returns:
    (torch.Tensor): [..., 4, 4] OpenGL view matrix"""
    utils3d.torch.transforms.extrinsics_to_view

@overload
def view_to_extrinsics(view: torch_.Tensor) -> torch_.Tensor:
    """OpenGL view matrix to OpenCV camera extrinsics

Args:
    view (torch.Tensor): [..., 4, 4] OpenGL view matrix

Returns:
    (torch.Tensor): [..., 4, 4] OpenCV camera extrinsics matrix"""
    utils3d.torch.transforms.view_to_extrinsics

@overload
def normalize_intrinsics(intrinsics: torch_.Tensor, width: Union[int, torch_.Tensor], height: Union[int, torch_.Tensor]) -> torch_.Tensor:
    """Normalize camera intrinsics(s) to uv space

Args:
    intrinsics (torch.Tensor): [..., 3, 3] camera intrinsics(s) to normalize
    width (int | torch.Tensor): [...] image width(s)
    height (int | torch.Tensor): [...] image height(s)

Returns:
    (torch.Tensor): [..., 3, 3] normalized camera intrinsics(s)"""
    utils3d.torch.transforms.normalize_intrinsics

@overload
def crop_intrinsics(intrinsics: torch_.Tensor, width: Union[int, torch_.Tensor], height: Union[int, torch_.Tensor], left: Union[int, torch_.Tensor], top: Union[int, torch_.Tensor], crop_width: Union[int, torch_.Tensor], crop_height: Union[int, torch_.Tensor]) -> torch_.Tensor:
    """Evaluate the new intrinsics(s) after crop the image: cropped_img = img[top:top+crop_height, left:left+crop_width]

Args:
    intrinsics (torch.Tensor): [..., 3, 3] camera intrinsics(s) to crop
    width (int | torch.Tensor): [...] image width(s)
    height (int | torch.Tensor): [...] image height(s)
    left (int | torch.Tensor): [...] left crop boundary
    top (int | torch.Tensor): [...] top crop boundary
    crop_width (int | torch.Tensor): [...] crop width
    crop_height (int | torch.Tensor): [...] crop height

Returns:
    (torch.Tensor): [..., 3, 3] cropped camera intrinsics(s)"""
    utils3d.torch.transforms.crop_intrinsics

@overload
def pixel_to_uv(pixel: torch_.Tensor, width: Union[int, torch_.Tensor], height: Union[int, torch_.Tensor]) -> torch_.Tensor:
    """Args:
    pixel (torch.Tensor): [..., 2] pixel coordinrates defined in image space,  x range is (0, W - 1), y range is (0, H - 1)
    width (int | torch.Tensor): [...] image width(s)
    height (int | torch.Tensor): [...] image height(s)

Returns:
    (torch.Tensor): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1)"""
    utils3d.torch.transforms.pixel_to_uv

@overload
def pixel_to_ndc(pixel: torch_.Tensor, width: Union[int, torch_.Tensor], height: Union[int, torch_.Tensor]) -> torch_.Tensor:
    """Args:
    pixel (torch.Tensor): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1)
    width (int | torch.Tensor): [...] image width(s)
    height (int | torch.Tensor): [...] image height(s)

Returns:
    (torch.Tensor): [..., 2] pixel coordinrates defined in ndc space, the range is (-1, 1)"""
    utils3d.torch.transforms.pixel_to_ndc

@overload
def uv_to_pixel(uv: torch_.Tensor, width: Union[int, torch_.Tensor], height: Union[int, torch_.Tensor]) -> torch_.Tensor:
    """Args:
    uv (torch.Tensor): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1)
    width (int | torch.Tensor): [...] image width(s)
    height (int | torch.Tensor): [...] image height(s)

Returns:
    (torch.Tensor): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1)"""
    utils3d.torch.transforms.uv_to_pixel

@overload
def project_depth(depth: torch_.Tensor, near: Union[float, torch_.Tensor], far: Union[float, torch_.Tensor]) -> torch_.Tensor:
    """Project linear depth to depth value in screen space

Args:
    depth (torch.Tensor): [...] depth value
    near (float | torch.Tensor): [...] near plane to clip
    far (float | torch.Tensor): [...] far plane to clip

Returns:
    (torch.Tensor): [..., 1] depth value in screen space, value ranging in [0, 1]"""
    utils3d.torch.transforms.project_depth

@overload
def depth_buffer_to_linear(depth: torch_.Tensor, near: Union[float, torch_.Tensor], far: Union[float, torch_.Tensor]) -> torch_.Tensor:
    """Linearize depth value to linear depth

Args:
    depth (torch.Tensor): [...] screen depth value, ranging in [0, 1]
    near (float | torch.Tensor): [...] near plane to clip
    far (float | torch.Tensor): [...] far plane to clip

Returns:
    (torch.Tensor): [...] linear depth"""
    utils3d.torch.transforms.depth_buffer_to_linear

@overload
def project_gl(points: torch_.Tensor, model: torch_.Tensor = None, view: torch_.Tensor = None, perspective: torch_.Tensor = None) -> Tuple[torch_.Tensor, torch_.Tensor]:
    """Project 3D points to 2D following the OpenGL convention (except for row major matrice)

Args:
    points (torch.Tensor): [..., N, 3 or 4] 3D points to project, if the last 
        dimension is 4, the points are assumed to be in homogeneous coordinates
    model (torch.Tensor): [..., 4, 4] model matrix
    view (torch.Tensor): [..., 4, 4] view matrix
    perspective (torch.Tensor): [..., 4, 4] perspective matrix

Returns:
    scr_coord (torch.Tensor): [..., N, 3] screen space coordinates, value ranging in [0, 1].
        The origin (0., 0., 0.) is corresponding to the left & bottom & nearest
    linear_depth (torch.Tensor): [..., N] linear depth"""
    utils3d.torch.transforms.project_gl

@overload
def project_cv(points: torch_.Tensor, extrinsics: torch_.Tensor = None, intrinsics: torch_.Tensor = None) -> Tuple[torch_.Tensor, torch_.Tensor]:
    """Project 3D points to 2D following the OpenCV convention

Args:
    points (torch.Tensor): [..., N, 3] or [..., N, 4] 3D points to project, if the last
        dimension is 4, the points are assumed to be in homogeneous coordinates
    extrinsics (torch.Tensor): [..., 4, 4] extrinsics matrix
    intrinsics (torch.Tensor): [..., 3, 3] intrinsics matrix

Returns:
    uv_coord (torch.Tensor): [..., N, 2] uv coordinates, value ranging in [0, 1].
        The origin (0., 0.) is corresponding to the left & top
    linear_depth (torch.Tensor): [..., N] linear depth"""
    utils3d.torch.transforms.project_cv

@overload
def unproject_gl(screen_coord: torch_.Tensor, model: torch_.Tensor = None, view: torch_.Tensor = None, perspective: torch_.Tensor = None) -> torch_.Tensor:
    """Unproject screen space coordinates to 3D view space following the OpenGL convention (except for row major matrice)

Args:
    screen_coord (torch.Tensor): [... N, 3] screen space coordinates, value ranging in [0, 1].
        The origin (0., 0., 0.) is corresponding to the left & bottom & nearest
    model (torch.Tensor): [..., 4, 4] model matrix
    view (torch.Tensor): [..., 4, 4] view matrix
    perspective (torch.Tensor): [..., 4, 4] perspective matrix

Returns:
    points (torch.Tensor): [..., N, 3] 3d points"""
    utils3d.torch.transforms.unproject_gl

@overload
def unproject_cv(uv_coord: torch_.Tensor, depth: torch_.Tensor, extrinsics: torch_.Tensor = None, intrinsics: torch_.Tensor = None) -> torch_.Tensor:
    """Unproject uv coordinates to 3D view space following the OpenCV convention

Args:
    uv_coord (torch.Tensor): [..., N, 2] uv coordinates, value ranging in [0, 1].
        The origin (0., 0.) is corresponding to the left & top
    depth (torch.Tensor): [..., N] depth value
    extrinsics (torch.Tensor): [..., 4, 4] extrinsics matrix
    intrinsics (torch.Tensor): [..., 3, 3] intrinsics matrix

Returns:
    points (torch.Tensor): [..., N, 3] 3d points"""
    utils3d.torch.transforms.unproject_cv

@overload
def skew_symmetric(v: torch_.Tensor):
    """Skew symmetric matrix from a 3D vector"""
    utils3d.torch.transforms.skew_symmetric

@overload
def rotation_matrix_from_vectors(v1: torch_.Tensor, v2: torch_.Tensor):
    """Rotation matrix that rotates v1 to v2"""
    utils3d.torch.transforms.rotation_matrix_from_vectors

@overload
def euler_axis_angle_rotation(axis: str, angle: torch_.Tensor) -> torch_.Tensor:
    """Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.

Args:
    axis: Axis label "X" or "Y or "Z".
    angle: any shape tensor of Euler angles in radians

Returns:
    Rotation matrices as tensor of shape (..., 3, 3)."""
    utils3d.torch.transforms.euler_axis_angle_rotation

@overload
def euler_angles_to_matrix(euler_angles: torch_.Tensor, convention: str = 'XYZ') -> torch_.Tensor:
    """Convert rotations given as Euler angles in radians to rotation matrices.

Args:
    euler_angles: Euler angles in radians as tensor of shape (..., 3), XYZ
    convention: permutation of "X", "Y" or "Z", representing the order of Euler rotations to apply.

Returns:
    Rotation matrices as tensor of shape (..., 3, 3)."""
    utils3d.torch.transforms.euler_angles_to_matrix

@overload
def matrix_to_euler_angles(matrix: torch_.Tensor, convention: str) -> torch_.Tensor:
    """Convert rotations given as rotation matrices to Euler angles in radians.
NOTE: The composition order eg. `XYZ` means `Rz * Ry * Rx` (like blender), instead of `Rx * Ry * Rz` (like pytorch3d)

Args:
    matrix: Rotation matrices as tensor of shape (..., 3, 3).
    convention: Convention string of three uppercase letters.

Returns:
    Euler angles in radians as tensor of shape (..., 3), in the order of XYZ (like blender), instead of convention (like pytorch3d)"""
    utils3d.torch.transforms.matrix_to_euler_angles

@overload
def matrix_to_quaternion(rot_mat: torch_.Tensor, eps: float = 1e-12) -> torch_.Tensor:
    """Convert 3x3 rotation matrix to quaternion (w, x, y, z)

Args:
    rot_mat (torch.Tensor): shape (..., 3, 3), the rotation matrices to convert

Returns:
    torch.Tensor: shape (..., 4), the quaternions corresponding to the given rotation matrices"""
    utils3d.torch.transforms.matrix_to_quaternion

@overload
def quaternion_to_matrix(quaternion: torch_.Tensor, eps: float = 1e-12) -> torch_.Tensor:
    """Converts a batch of quaternions (w, x, y, z) to rotation matrices

Args:
    quaternion (torch.Tensor): shape (..., 4), the quaternions to convert

Returns:
    torch.Tensor: shape (..., 3, 3), the rotation matrices corresponding to the given quaternions"""
    utils3d.torch.transforms.quaternion_to_matrix

@overload
def matrix_to_axis_angle(rot_mat: torch_.Tensor, eps: float = 1e-12) -> torch_.Tensor:
    """Convert a batch of 3x3 rotation matrices to axis-angle representation (rotation vector)

Args:
    rot_mat (torch.Tensor): shape (..., 3, 3), the rotation matrices to convert

Returns:
    torch.Tensor: shape (..., 3), the axis-angle vectors corresponding to the given rotation matrices"""
    utils3d.torch.transforms.matrix_to_axis_angle

@overload
def axis_angle_to_matrix(axis_angle: torch_.Tensor, eps: float = 1e-12) -> torch_.Tensor:
    """Convert axis-angle representation (rotation vector) to rotation matrix, whose direction is the axis of rotation and length is the angle of rotation

Args:
    axis_angle (torch.Tensor): shape (..., 3), axis-angle vcetors

Returns:
    torch.Tensor: shape (..., 3, 3) The rotation matrices for the given axis-angle parameters"""
    utils3d.torch.transforms.axis_angle_to_matrix

@overload
def axis_angle_to_quaternion(axis_angle: torch_.Tensor, eps: float = 1e-12) -> torch_.Tensor:
    """Convert axis-angle representation (rotation vector) to quaternion (w, x, y, z)

Args:
    axis_angle (torch.Tensor): shape (..., 3), axis-angle vcetors

Returns:
    torch.Tensor: shape (..., 4) The quaternions for the given axis-angle parameters"""
    utils3d.torch.transforms.axis_angle_to_quaternion

@overload
def quaternion_to_axis_angle(quaternion: torch_.Tensor, eps: float = 1e-12) -> torch_.Tensor:
    """Convert a batch of quaternions (w, x, y, z) to axis-angle representation (rotation vector)

Args:
    quaternion (torch.Tensor): shape (..., 4), the quaternions to convert

Returns:
    torch.Tensor: shape (..., 3), the axis-angle vectors corresponding to the given quaternions"""
    utils3d.torch.transforms.quaternion_to_axis_angle

@overload
def slerp(rot_mat_1: torch_.Tensor, rot_mat_2: torch_.Tensor, t: Union[numbers.Number, torch_.Tensor]) -> torch_.Tensor:
    """Spherical linear interpolation between two rotation matrices

Args:
    rot_mat_1 (torch.Tensor): shape (..., 3, 3), the first rotation matrix
    rot_mat_2 (torch.Tensor): shape (..., 3, 3), the second rotation matrix
    t (torch.Tensor): scalar or shape (...,), the interpolation factor

Returns:
    torch.Tensor: shape (..., 3, 3), the interpolated rotation matrix"""
    utils3d.torch.transforms.slerp

@overload
def interpolate_extrinsics(ext1: torch_.Tensor, ext2: torch_.Tensor, t: Union[numbers.Number, torch_.Tensor]) -> torch_.Tensor:
    """Interpolate extrinsics between two camera poses. Linear interpolation for translation, spherical linear interpolation for rotation.

Args:
    ext1 (torch.Tensor): shape (..., 4, 4), the first camera pose
    ext2 (torch.Tensor): shape (..., 4, 4), the second camera pose
    t (torch.Tensor): scalar or shape (...,), the interpolation factor

Returns:
    torch.Tensor: shape (..., 4, 4), the interpolated camera pose"""
    utils3d.torch.transforms.interpolate_extrinsics

@overload
def interpolate_view(view1: torch_.Tensor, view2: torch_.Tensor, t: Union[numbers.Number, torch_.Tensor]):
    """Interpolate view matrices between two camera poses. Linear interpolation for translation, spherical linear interpolation for rotation.

Args:
    ext1 (torch.Tensor): shape (..., 4, 4), the first camera pose
    ext2 (torch.Tensor): shape (..., 4, 4), the second camera pose
    t (torch.Tensor): scalar or shape (...,), the interpolation factor

Returns:
    torch.Tensor: shape (..., 4, 4), the interpolated camera pose"""
    utils3d.torch.transforms.interpolate_view

@overload
def extrinsics_to_essential(extrinsics: torch_.Tensor):
    """extrinsics matrix `[[R, t] [0, 0, 0, 1]]` such that `x' = R (x - t)` to essential matrix such that `x' E x = 0`

Args:
    extrinsics (torch.Tensor): [..., 4, 4] extrinsics matrix

Returns:
    (torch.Tensor): [..., 3, 3] essential matrix"""
    utils3d.torch.transforms.extrinsics_to_essential

@overload
def to4x4(R: torch_.Tensor, t: torch_.Tensor):
    """Compose rotation matrix and translation vector to 4x4 transformation matrix

Args:
    R (torch.Tensor): [..., 3, 3] rotation matrix
    t (torch.Tensor): [..., 3] translation vector

Returns:
    (torch.Tensor): [..., 4, 4] transformation matrix"""
    utils3d.torch.transforms.to4x4

@overload
def rotation_matrix_2d(theta: Union[float, torch_.Tensor]):
    """2x2 matrix for 2D rotation

Args:
    theta (float | torch.Tensor): rotation angle in radians, arbitrary shape (...,)

Returns:
    (torch.Tensor): (..., 2, 2) rotation matrix"""
    utils3d.torch.transforms.rotation_matrix_2d

@overload
def rotate_2d(theta: Union[float, torch_.Tensor], center: torch_.Tensor = None):
    """3x3 matrix for 2D rotation around a center
```
   [[Rxx, Rxy, tx],
    [Ryx, Ryy, ty],
    [0,     0,  1]]
```
Args:
    theta (float | torch.Tensor): rotation angle in radians, arbitrary shape (...,)
    center (torch.Tensor): rotation center, arbitrary shape (..., 2). Default to (0, 0)
    
Returns:
    (torch.Tensor): (..., 3, 3) transformation matrix"""
    utils3d.torch.transforms.rotate_2d

@overload
def translate_2d(translation: torch_.Tensor):
    """Translation matrix for 2D translation
```
   [[1, 0, tx],
    [0, 1, ty],
    [0, 0,  1]]
```
Args:
    translation (torch.Tensor): translation vector, arbitrary shape (..., 2)

Returns:
    (torch.Tensor): (..., 3, 3) transformation matrix"""
    utils3d.torch.transforms.translate_2d

@overload
def scale_2d(scale: Union[float, torch_.Tensor], center: torch_.Tensor = None):
    """Scale matrix for 2D scaling
```
   [[s, 0, tx],
    [0, s, ty],
    [0, 0,  1]]
```
Args:
    scale (float | torch.Tensor): scale factor, arbitrary shape (...,)
    center (torch.Tensor): scale center, arbitrary shape (..., 2). Default to (0, 0)

Returns:
    (torch.Tensor): (..., 3, 3) transformation matrix"""
    utils3d.torch.transforms.scale_2d

@overload
def apply_2d(transform: torch_.Tensor, points: torch_.Tensor):
    """Apply (3x3 or 2x3) 2D affine transformation to points
```
    p = R @ p + t
```
Args:
    transform (torch.Tensor): (..., 2 or 3, 3) transformation matrix
    points (torch.Tensor): (..., N, 2) points to transform

Returns:
    (torch.Tensor): (..., N, 2) transformed points"""
    utils3d.torch.transforms.apply_2d

@overload
def RastContext(nvd_ctx: Union[nvdiffrast.torch.ops.RasterizeCudaContext, nvdiffrast.torch.ops.RasterizeGLContext] = None, *, backend: Literal['cuda', 'gl'] = 'gl', device: Union[str, torch_.device] = None):
    """Create a rasterization context. Nothing but a wrapper of nvdiffrast.torch.RasterizeCudaContext or nvdiffrast.torch.RasterizeGLContext."""
    utils3d.torch.rasterization.RastContext

@overload
def rasterize_triangle_faces(ctx: utils3d.torch.rasterization.RastContext, vertices: torch_.Tensor, faces: torch_.Tensor, attr: torch_.Tensor, width: int, height: int, model: torch_.Tensor = None, view: torch_.Tensor = None, projection: torch_.Tensor = None, antialiasing: Union[bool, List[int]] = True, diff_attrs: Optional[List[int]] = None) -> Tuple[torch_.Tensor, torch_.Tensor, Optional[torch_.Tensor]]:
    """Rasterize a mesh with vertex attributes.

Args:
    ctx (GLContext): rasterizer context
    vertices (np.ndarray): (B, N, 2 or 3 or 4)
    faces (torch.Tensor): (T, 3)
    attr (torch.Tensor): (B, N, C)
    width (int): width of the output image
    height (int): height of the output image
    model (torch.Tensor, optional): ([B,] 4, 4) model matrix. Defaults to None (identity).
    view (torch.Tensor, optional): ([B,] 4, 4) view matrix. Defaults to None (identity).
    projection (torch.Tensor, optional): ([B,] 4, 4) projection matrix. Defaults to None (identity).
    antialiasing (Union[bool, List[int]], optional): whether to perform antialiasing. Defaults to True. If a list of indices is provided, only those channels will be antialiased.
    diff_attrs (Union[None, List[int]], optional): indices of attributes to compute screen-space derivatives. Defaults to None.

Returns:
    image: (torch.Tensor): (B, C, H, W)
    depth: (torch.Tensor): (B, H, W) screen space depth, ranging from 0 (near) to 1. (far)
        NOTE: Empty pixels will have depth 1., i.e. far plane."""
    utils3d.torch.rasterization.rasterize_triangle_faces

@overload
def warp_image_by_depth(ctx: utils3d.torch.rasterization.RastContext, depth: torch_.FloatTensor, image: torch_.FloatTensor = None, mask: torch_.BoolTensor = None, width: int = None, height: int = None, *, extrinsics_src: torch_.FloatTensor = None, extrinsics_tgt: torch_.FloatTensor = None, intrinsics_src: torch_.FloatTensor = None, intrinsics_tgt: torch_.FloatTensor = None, near: float = 0.1, far: float = 100.0, antialiasing: bool = True, backslash: bool = False, padding: int = 0, return_uv: bool = False, return_dr: bool = False) -> Tuple[torch_.FloatTensor, torch_.FloatTensor, torch_.BoolTensor, Optional[torch_.FloatTensor], Optional[torch_.FloatTensor]]:
    """Warp image by depth. 
NOTE: if batch size is 1, image mesh will be triangulated aware of the depth, yielding less distorted results.
Otherwise, image mesh will be triangulated simply for batch rendering.

Args:
    ctx (Union[dr.RasterizeCudaContext, dr.RasterizeGLContext]): rasterization context
    depth (torch.Tensor): (B, H, W) linear depth
    image (torch.Tensor): (B, C, H, W). None to use image space uv. Defaults to None.
    width (int, optional): width of the output image. None to use the same as depth. Defaults to None.
    height (int, optional): height of the output image. Defaults the same as depth..
    extrinsics_src (torch.Tensor, optional): (B, 4, 4) extrinsics matrix for source. None to use identity. Defaults to None.
    extrinsics_tgt (torch.Tensor, optional): (B, 4, 4) extrinsics matrix for target. None to use identity. Defaults to None.
    intrinsics_src (torch.Tensor, optional): (B, 3, 3) intrinsics matrix for source. None to use the same as target. Defaults to None.
    intrinsics_tgt (torch.Tensor, optional): (B, 3, 3) intrinsics matrix for target. None to use the same as source. Defaults to None.
    near (float, optional): near plane. Defaults to 0.1. 
    far (float, optional): far plane. Defaults to 100.0.
    antialiasing (bool, optional): whether to perform antialiasing. Defaults to True.
    backslash (bool, optional): whether to use backslash triangulation. Defaults to False.
    padding (int, optional): padding of the image. Defaults to 0.
    return_uv (bool, optional): whether to return the uv. Defaults to False.
    return_dr (bool, optional): whether to return the image-space derivatives of uv. Defaults to False.

Returns:
    image: (torch.FloatTensor): (B, C, H, W) rendered image
    depth: (torch.FloatTensor): (B, H, W) linear depth, ranging from 0 to inf
    mask: (torch.BoolTensor): (B, H, W) mask of valid pixels
    uv: (torch.FloatTensor): (B, 2, H, W) image-space uv
    dr: (torch.FloatTensor): (B, 4, H, W) image-space derivatives of uv"""
    utils3d.torch.rasterization.warp_image_by_depth

@overload
def warp_image_by_forward_flow(ctx: utils3d.torch.rasterization.RastContext, image: torch_.FloatTensor, flow: torch_.FloatTensor, depth: torch_.FloatTensor = None, *, antialiasing: bool = True, backslash: bool = False) -> Tuple[torch_.FloatTensor, torch_.BoolTensor]:
    """Warp image by forward flow.
NOTE: if batch size is 1, image mesh will be triangulated aware of the depth, yielding less distorted results.
Otherwise, image mesh will be triangulated simply for batch rendering.

Args:
    ctx (Union[dr.RasterizeCudaContext, dr.RasterizeGLContext]): rasterization context
    image (torch.Tensor): (B, C, H, W) image
    flow (torch.Tensor): (B, 2, H, W) forward flow
    depth (torch.Tensor, optional): (B, H, W) linear depth. If None, will use the same for all pixels. Defaults to None.
    antialiasing (bool, optional): whether to perform antialiasing. Defaults to True.
    backslash (bool, optional): whether to use backslash triangulation. Defaults to False.

Returns:
    image: (torch.FloatTensor): (B, C, H, W) rendered image
    mask: (torch.BoolTensor): (B, H, W) mask of valid pixels"""
    utils3d.torch.rasterization.warp_image_by_forward_flow