Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
This script implements a multi-modal Swahili assistant for Hugging Face Spaces.
|
4 |
+
It uses Gradio for the user interface and loads models from the HF Hub.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import onnxruntime
|
10 |
+
import torch
|
11 |
+
import librosa
|
12 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, AutoTokenizer, pipeline
|
13 |
+
from scipy.io.wavfile import write as write_wav
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
|
17 |
+
# --- Configuration ---
|
18 |
+
# IMPORTANT: Replace these with your actual model IDs on the Hugging Face Hub.
|
19 |
+
# You must upload your fine-tuned ASR model to the Hub.
|
20 |
+
STT_MODEL_ID = "YOUR_USERNAME/YOUR_ASR_MODEL_ID" # e.g., "MickyMike/SALAMA_B3_ASR"
|
21 |
+
|
22 |
+
# You can use any powerful multilingual model that supports Swahili.
|
23 |
+
LLM_MODEL_ID = "google/gemma-2-9b-it"
|
24 |
+
|
25 |
+
# This is the tokenizer for your ONNX TTS model.
|
26 |
+
TTS_TOKENIZER_ID = "facebook/mms-tts-swh"
|
27 |
+
TTS_ONNX_MODEL_PATH = "swahili_tts.onnx" # Make sure this file is in your Space repo
|
28 |
+
|
29 |
+
# Ensure the temporary directory for audio files exists
|
30 |
+
TEMP_DIR = "temp"
|
31 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
32 |
+
|
33 |
+
|
34 |
+
class WeeboAssistant:
|
35 |
+
def __init__(self):
|
36 |
+
# Audio settings
|
37 |
+
self.STT_SAMPLE_RATE = 16000
|
38 |
+
self.TTS_SAMPLE_RATE = 16000
|
39 |
+
|
40 |
+
# System prompt for the LLM
|
41 |
+
self.SYSTEM_PROMPT = "Wewe ni msaidizi mwenye akili, jibu swali lililoulizwa kwa UFUPI na kwa usahihi. Jibu kwa lugha ya Kiswahili pekee. Hakuna jibu refu."
|
42 |
+
|
43 |
+
self._init_models()
|
44 |
+
|
45 |
+
def _init_models(self):
|
46 |
+
"""Initializes all models required for the pipeline."""
|
47 |
+
print("Initializing models...")
|
48 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
49 |
+
self.torch_dtype = torch.bfloat16 if self.device == "cuda" else torch.float32
|
50 |
+
print(f"Using device: {self.device}")
|
51 |
+
|
52 |
+
# --- 1. Initialize Swahili Speech-to-Text (STT/ASR) ---
|
53 |
+
print(f"Loading STT model: {STT_MODEL_ID}")
|
54 |
+
try:
|
55 |
+
self.stt_processor = AutoProcessor.from_pretrained(STT_MODEL_ID)
|
56 |
+
self.stt_model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
57 |
+
STT_MODEL_ID,
|
58 |
+
torch_dtype=self.torch_dtype,
|
59 |
+
low_cpu_mem_usage=True,
|
60 |
+
use_safetensors=True
|
61 |
+
)
|
62 |
+
self.stt_model.to(self.device)
|
63 |
+
print("STT model loaded successfully.")
|
64 |
+
except Exception as e:
|
65 |
+
print(f"FATAL: Could not load STT model. Please check the model ID and ensure you have access. Error: {e}")
|
66 |
+
# In a real app, you might want to handle this more gracefully
|
67 |
+
raise
|
68 |
+
|
69 |
+
# --- 2. Initialize Language Model (LLM) ---
|
70 |
+
print(f"Loading LLM: {LLM_MODEL_ID}")
|
71 |
+
try:
|
72 |
+
# We don't need a separate tokenizer for the pipeline
|
73 |
+
self.llm_pipeline = pipeline(
|
74 |
+
"text-generation",
|
75 |
+
model=LLM_MODEL_ID,
|
76 |
+
model_kwargs={"torch_dtype": self.torch_dtype},
|
77 |
+
device=self.device,
|
78 |
+
)
|
79 |
+
print("LLM pipeline loaded successfully.")
|
80 |
+
except Exception as e:
|
81 |
+
print(f"FATAL: Could not load LLM. Error: {e}")
|
82 |
+
raise
|
83 |
+
|
84 |
+
# --- 3. Initialize Swahili Text-to-Speech (TTS) ---
|
85 |
+
print(f"Loading TTS model: {TTS_ONNX_MODEL_PATH}")
|
86 |
+
try:
|
87 |
+
# The ONNX model should be in the same repository as app.py
|
88 |
+
self.tts_session = onnxruntime.InferenceSession(
|
89 |
+
TTS_ONNX_MODEL_PATH,
|
90 |
+
providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
|
91 |
+
)
|
92 |
+
self.tts_tokenizer = AutoTokenizer.from_pretrained(TTS_TOKENIZER_ID)
|
93 |
+
print("TTS model and tokenizer loaded successfully.")
|
94 |
+
except Exception as e:
|
95 |
+
print(f"FATAL: Could not load TTS model. Make sure '{TTS_ONNX_MODEL_PATH}' is in the repository. Error: {e}")
|
96 |
+
raise
|
97 |
+
|
98 |
+
print("-" * 30)
|
99 |
+
print("All models initialized successfully! ✅")
|
100 |
+
|
101 |
+
def transcribe_audio(self, audio_tuple: tuple) -> str:
|
102 |
+
"""
|
103 |
+
Transcribes audio from Gradio's audio component.
|
104 |
+
The input is a tuple (sample_rate, numpy_array).
|
105 |
+
"""
|
106 |
+
if audio_tuple is None:
|
107 |
+
return ""
|
108 |
+
|
109 |
+
sample_rate, audio_data = audio_tuple
|
110 |
+
|
111 |
+
# Convert to mono float32
|
112 |
+
if audio_data.ndim > 1:
|
113 |
+
audio_data = audio_data.mean(axis=1)
|
114 |
+
if audio_data.dtype != np.float32:
|
115 |
+
audio_data = audio_data.astype(np.float32) / np.iinfo(audio_data.dtype).max
|
116 |
+
|
117 |
+
# Resample if necessary
|
118 |
+
if sample_rate != self.STT_SAMPLE_RATE:
|
119 |
+
audio_data = librosa.resample(y=audio_data, orig_sr=sample_rate, target_sr=self.STT_SAMPLE_RATE)
|
120 |
+
|
121 |
+
if len(audio_data) < 1000: # Ignore very short audio clips
|
122 |
+
return "(Audio too short to transcribe)"
|
123 |
+
|
124 |
+
# Process and transcribe
|
125 |
+
inputs = self.stt_processor(audio_data, sampling_rate=self.STT_SAMPLE_RATE, return_tensors="pt")
|
126 |
+
inputs = {key: val.to(self.device) for key, val in inputs.items()}
|
127 |
+
|
128 |
+
with torch.no_grad():
|
129 |
+
generated_ids = self.stt_model.generate(**inputs, max_new_tokens=128)
|
130 |
+
|
131 |
+
transcription = self.stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
132 |
+
return transcription.strip()
|
133 |
+
|
134 |
+
def generate_speech(self, text: str) -> str:
|
135 |
+
"""
|
136 |
+
Generates audio from text and saves it to a temporary file.
|
137 |
+
Returns the path to the audio file.
|
138 |
+
"""
|
139 |
+
if not text:
|
140 |
+
return None
|
141 |
+
|
142 |
+
# Clean text
|
143 |
+
text = text.strip()
|
144 |
+
|
145 |
+
try:
|
146 |
+
inputs = self.tts_tokenizer(text, return_tensors="np")
|
147 |
+
input_ids = inputs.input_ids
|
148 |
+
ort_inputs = {self.tts_session.get_inputs()[0].name: input_ids}
|
149 |
+
audio_waveform = self.tts_session.run(None, ort_inputs)[0].flatten()
|
150 |
+
|
151 |
+
# Save to a temporary WAV file
|
152 |
+
output_path = os.path.join(TEMP_DIR, f"{os.urandom(8).hex()}.wav")
|
153 |
+
write_wav(output_path, self.TTS_SAMPLE_RATE, audio_waveform)
|
154 |
+
return output_path
|
155 |
+
except Exception as e:
|
156 |
+
print(f"Error during audio generation: {e}")
|
157 |
+
return None
|
158 |
+
|
159 |
+
def get_llm_response(self, chat_history: list):
|
160 |
+
"""
|
161 |
+
Gets a streaming response from the LLM.
|
162 |
+
Yields the updated full response at each step.
|
163 |
+
"""
|
164 |
+
# Format messages for the pipeline
|
165 |
+
# The Gemma-2 instruction-tuned model uses a specific turn-based format
|
166 |
+
messages = [{'role': 'system', 'content': self.SYSTEM_PROMPT}]
|
167 |
+
for turn in chat_history:
|
168 |
+
messages.append({'role': 'user', 'content': turn[0]})
|
169 |
+
if turn[1] is not None:
|
170 |
+
messages.append({'role': 'assistant', 'content': turn[1]})
|
171 |
+
|
172 |
+
prompt = self.llm_pipeline.tokenizer.apply_chat_template(
|
173 |
+
messages,
|
174 |
+
tokenize=False,
|
175 |
+
add_generation_prompt=True
|
176 |
+
)
|
177 |
+
|
178 |
+
terminators = [
|
179 |
+
self.llm_pipeline.tokenizer.eos_token_id,
|
180 |
+
self.llm_pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
181 |
+
]
|
182 |
+
|
183 |
+
streamer = self.llm_pipeline(
|
184 |
+
prompt,
|
185 |
+
max_new_tokens=512,
|
186 |
+
eos_token_id=terminators,
|
187 |
+
do_sample=True,
|
188 |
+
temperature=0.6,
|
189 |
+
top_p=0.9,
|
190 |
+
streamer=gr.TextIterator(),
|
191 |
+
)
|
192 |
+
return streamer
|
193 |
+
|
194 |
+
# --- Gradio Interface Logic ---
|
195 |
+
|
196 |
+
# Instantiate the assistant
|
197 |
+
assistant = WeeboAssistant()
|
198 |
+
|
199 |
+
def s2s_pipeline(audio_input, chat_history):
|
200 |
+
"""The main function for the Speech-to-Speech tab."""
|
201 |
+
# 1. Transcribe user's speech
|
202 |
+
user_text = assistant.transcribe_audio(audio_input)
|
203 |
+
if not user_text or user_text.startswith("("):
|
204 |
+
chat_history.append((user_text or "(No valid speech detected)", None))
|
205 |
+
yield chat_history, None, "Please record your voice again."
|
206 |
+
return
|
207 |
+
|
208 |
+
chat_history.append((user_text, None))
|
209 |
+
yield chat_history, None, "..." # Show user text and a thinking indicator
|
210 |
+
|
211 |
+
# 2. Get LLM response as a stream
|
212 |
+
response_stream = assistant.get_llm_response(chat_history)
|
213 |
+
|
214 |
+
# Stream the response text to the UI
|
215 |
+
llm_response_text = ""
|
216 |
+
for text_chunk in response_stream:
|
217 |
+
llm_response_text = text_chunk
|
218 |
+
chat_history[-1] = (user_text, llm_response_text)
|
219 |
+
yield chat_history, None, llm_response_text
|
220 |
+
|
221 |
+
# 3. Synthesize the final LLM response to speech
|
222 |
+
final_audio_path = assistant.generate_speech(llm_response_text)
|
223 |
+
|
224 |
+
# 4. Final update to the UI
|
225 |
+
yield chat_history, final_audio_path, llm_response_text
|
226 |
+
|
227 |
+
def t2t_pipeline(text_input, chat_history):
|
228 |
+
"""The main function for the Text-to-Text tab."""
|
229 |
+
chat_history.append((text_input, None))
|
230 |
+
yield chat_history, "..."
|
231 |
+
|
232 |
+
response_stream = assistant.get_llm_response(chat_history)
|
233 |
+
|
234 |
+
llm_response_text = ""
|
235 |
+
for text_chunk in response_stream:
|
236 |
+
llm_response_text = text_chunk
|
237 |
+
chat_history[-1] = (text_input, llm_response_text)
|
238 |
+
yield chat_history, llm_response_text
|
239 |
+
|
240 |
+
# --- Build Gradio UI ---
|
241 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Msaidizi wa Kiswahili") as demo:
|
242 |
+
gr.Markdown("# 🤖 Msaidizi wa Sauti wa Kiswahili (Swahili Voice Assistant)")
|
243 |
+
gr.Markdown("Ongea na msaidizi kwa Kiswahili. Toa sauti, andika maandishi, na upate majibu kwa sauti au maandishi.")
|
244 |
+
|
245 |
+
with gr.Tabs():
|
246 |
+
# Tab 1: Speech-to-Speech
|
247 |
+
with gr.TabItem("🎙️ Sauti-kwa-Sauti (Speech-to-Speech)"):
|
248 |
+
with gr.Row():
|
249 |
+
with gr.Column(scale=2):
|
250 |
+
s2s_audio_in = gr.Audio(sources=["microphone"], type="numpy", label="Ongea Hapa (Speak Here)")
|
251 |
+
s2s_submit_btn = gr.Button("Tuma (Submit)", variant="primary")
|
252 |
+
with gr.Column(scale=3):
|
253 |
+
s2s_chatbot = gr.Chatbot(label="Mazungumzo (Conversation)", bubble_full_width=False, height=400)
|
254 |
+
s2s_audio_out = gr.Audio(type="filepath", label="Jibu la Sauti (Audio Response)", autoplay=True)
|
255 |
+
s2s_text_out = gr.Textbox(label="Jibu la Maandishi (Text Response)", interactive=False)
|
256 |
+
|
257 |
+
# Tab 2: Text-to-Text
|
258 |
+
with gr.TabItem("⌨️ Maandishi-kwa-Maandishi (Text-to-Text)"):
|
259 |
+
t2t_chatbot = gr.Chatbot(label="Mazungumzo (Conversation)", bubble_full_width=False, height=500)
|
260 |
+
with gr.Row():
|
261 |
+
t2t_text_in = gr.Textbox(label="Andika Hapa (Write Here)", placeholder="Habari yako...", scale=4)
|
262 |
+
t2t_submit_btn = gr.Button("Tuma (Submit)", variant="primary", scale=1)
|
263 |
+
|
264 |
+
# Tab 3: Direct Tools
|
265 |
+
with gr.TabItem("🛠️ Zana (Tools)"):
|
266 |
+
with gr.Row():
|
267 |
+
# Speech to Text Tool
|
268 |
+
with gr.Column():
|
269 |
+
gr.Markdown("### Unukuzi wa Sauti (Speech Transcription)")
|
270 |
+
tool_s2t_audio_in = gr.Audio(sources=["microphone"], type="numpy", label="Sauti ya Kuingiza (Input Audio)")
|
271 |
+
tool_s2t_text_out = gr.Textbox(label="Maandishi Yaliyonukuliwa (Transcribed Text)", interactive=False)
|
272 |
+
tool_s2t_btn = gr.Button("Nukuu (Transcribe)")
|
273 |
+
# Text to Speech Tool
|
274 |
+
with gr.Column():
|
275 |
+
gr.Markdown("### Utengenezaji wa Sauti (Speech Synthesis)")
|
276 |
+
tool_t2s_text_in = gr.Textbox(label="Maandishi ya Kuingiza (Input Text)", placeholder="Andika Kiswahili hapa...")
|
277 |
+
tool_t2s_audio_out = gr.Audio(type="filepath", label="Sauti Iliyotengenezwa (Synthesized Audio)", autoplay=False)
|
278 |
+
tool_t2s_btn = gr.Button("Tengeneza Sauti (Synthesize)")
|
279 |
+
|
280 |
+
# --- Event Handlers ---
|
281 |
+
|
282 |
+
# Speech-to-Speech handler
|
283 |
+
s2s_submit_btn.click(
|
284 |
+
fn=s2s_pipeline,
|
285 |
+
inputs=[s2s_audio_in, s2s_chatbot],
|
286 |
+
outputs=[s2s_chatbot, s2s_audio_out, s2s_text_out],
|
287 |
+
queue=True
|
288 |
+
)
|
289 |
+
|
290 |
+
# Text-to-Text handler
|
291 |
+
t2t_submit_btn.click(
|
292 |
+
fn=t2t_pipeline,
|
293 |
+
inputs=[t2t_text_in, t2t_chatbot],
|
294 |
+
outputs=[t2t_chatbot, t2t_text_in.change(value="")], # Clear input box on submit
|
295 |
+
queue=True
|
296 |
+
).then(
|
297 |
+
lambda x: x, t2t_chatbot, t2t_text_in
|
298 |
+
) # The text response is streamed directly to the chatbot UI
|
299 |
+
|
300 |
+
# Tool handlers
|
301 |
+
tool_s2t_btn.click(
|
302 |
+
fn=assistant.transcribe_audio,
|
303 |
+
inputs=tool_s2t_audio_in,
|
304 |
+
outputs=tool_s2t_text_out
|
305 |
+
)
|
306 |
+
tool_t2s_btn.click(
|
307 |
+
fn=assistant.generate_speech,
|
308 |
+
inputs=tool_t2s_text_in,
|
309 |
+
outputs=tool_t2s_audio_out
|
310 |
+
)
|
311 |
+
|
312 |
+
# Launch the Gradio app
|
313 |
+
demo.queue().launch(debug=True)
|