Spaces:
Running
Running
Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import PIL.Image # Workaround for PIL/Gradio bug :contentReference[oaicite:13]{index=13}
|
4 |
+
import gradio as gr
|
5 |
+
from gradio_client import Client, handle_file
|
6 |
+
|
7 |
+
from numpy import array
|
8 |
+
# 1. Load your HF token from env
|
9 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # export HF_TOKEN="hf_..."
|
10 |
+
# 1) Connect to the Leffa Gradio app’s predict endpoint
|
11 |
+
# Use the full "/call/predict" API path as shown on the View API page
|
12 |
+
client = Client("franciszzj/Leffa", hf_token=HF_TOKEN, ) # Gradio Python client
|
13 |
+
|
14 |
+
def virtual_tryon(person_path, garment_path):
|
15 |
+
# 2) Wrap file inputs so Gradio client uploads them correctly
|
16 |
+
person_file = handle_file(person_path) # handle_file uploads the image :contentReference[oaicite:6]{index=6}
|
17 |
+
garment_file = handle_file(garment_path)
|
18 |
+
|
19 |
+
# 3) Build inputs in the exact order shown on the “Use via API” page :contentReference[oaicite:7]{index=7}
|
20 |
+
|
21 |
+
# 4) Call the named endpoint with handle_file inputs
|
22 |
+
result = client.predict(
|
23 |
+
person_file, # Person Image
|
24 |
+
garment_file, # Garment Image
|
25 |
+
ref_acceleration=False,
|
26 |
+
step=30,
|
27 |
+
scale=2.5,
|
28 |
+
seed=42,
|
29 |
+
vt_model_type="viton_hd",
|
30 |
+
vt_garment_type="upper_body",
|
31 |
+
vt_repaint=False,
|
32 |
+
api_name="/leffa_predict_vt"
|
33 |
+
)
|
34 |
+
# result[0] is the generated image filepath on the server
|
35 |
+
return result[0] # Gradio will download & display this file
|
36 |
+
|
37 |
+
# 5) Gradio UI
|
38 |
+
with gr.Blocks() as demo:
|
39 |
+
gr.Markdown("## Leffa Virtual Try-On")
|
40 |
+
with gr.Row():
|
41 |
+
src = gr.Image(sources="upload", type="filepath", label="Person Image")
|
42 |
+
ref = gr.Image(sources="upload", type="filepath", label="Garment Image")
|
43 |
+
out = gr.Image(type="filepath", label="Result", )
|
44 |
+
btn = gr.Button("Generate")
|
45 |
+
btn.click(virtual_tryon, [src, ref], out)
|
46 |
+
|
47 |
+
demo.launch(share=True,
|
48 |
+
show_error=True,
|
49 |
+
pwa=True,)
|