Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def highlight_answer(context, answer):
|
2 |
+
"""
|
3 |
+
Highlight the answer in the given context.
|
4 |
+
|
5 |
+
Parameters:
|
6 |
+
- context (str): The context in which the answer is found.
|
7 |
+
- answer (str): The answer to be highlighted.
|
8 |
+
|
9 |
+
Returns:
|
10 |
+
- str: The context with the answer highlighted by '<h>' tags.
|
11 |
+
|
12 |
+
Example:
|
13 |
+
>>> context = 'The quick brown fox jumps over the lazy dog.'
|
14 |
+
>>> answer = 'fox'
|
15 |
+
>>> highlight_answer(context, answer)
|
16 |
+
'The quick brown <h> fox <h> jumps over the lazy dog.'
|
17 |
+
"""
|
18 |
+
|
19 |
+
context_splits = context.split(answer)
|
20 |
+
|
21 |
+
text = ""
|
22 |
+
for split in context_splits:
|
23 |
+
text += split
|
24 |
+
text += ' <h> '
|
25 |
+
text += answer
|
26 |
+
text += ' <h> '
|
27 |
+
text += split
|
28 |
+
|
29 |
+
return text
|
30 |
+
|
31 |
+
|
32 |
+
def prepare_instruction(answer_highlighted_context):
|
33 |
+
"""
|
34 |
+
Prepare an instruction prompt for generating a question.
|
35 |
+
|
36 |
+
Parameters:
|
37 |
+
- answer_highlighted_context (str): The context with the answer highlighted by '<h>' tags.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
- str: The instruction prompt string.
|
41 |
+
|
42 |
+
Example:
|
43 |
+
>>> answer_highlighted_context = 'The quick brown <h> fox <h> jumps over the lazy dog.'
|
44 |
+
>>> prepare_instruction(answer_highlighted_context)
|
45 |
+
'Generate a question whose answer is highlighted by <h> from the context delimited by the triple backticks.\\n context:\\n ```\\n The quick brown <h> fox <h> jumps over the lazy dog.\\n ```\\n '
|
46 |
+
"""
|
47 |
+
|
48 |
+
instruction_prompt = f"""Generate a question whose answer is highlighted by <h> from the context delimited by the triple backticks.
|
49 |
+
context:
|
50 |
+
```
|
51 |
+
{answer_highlighted_context}
|
52 |
+
```
|
53 |
+
"""
|
54 |
+
|
55 |
+
return instruction_prompt
|
56 |
+
|
57 |
+
from transformers import pipeline
|
58 |
+
|
59 |
+
pipe = pipeline('text2text-generation', model='mohammedaly2222002/t5-small-squad-qg-v2', device_map='auto')
|
60 |
+
|
61 |
+
import gradio as gr
|
62 |
+
|
63 |
+
def processed(question,answer,num):
|
64 |
+
# The uploaded image is a PIL image
|
65 |
+
answer_highlighted_context = highlight_answer(context=question, answer=answer)
|
66 |
+
prompt = prepare_instruction(answer_highlighted_context)
|
67 |
+
outputs = pipe(prompt,num_return_sequences=int(num),num_beams=5,num_beam_groups=5,diversity_penalty=1.0)
|
68 |
+
result="Generated questions are "+"\n"+"\n"
|
69 |
+
number=0
|
70 |
+
for output in outputs:
|
71 |
+
number=number+1
|
72 |
+
result+=str(number)+"."+output['generated_text']+"\n"
|
73 |
+
return result
|
74 |
+
|
75 |
+
|
76 |
+
iface = gr.Interface(processed, # Function to process the image
|
77 |
+
inputs=[
|
78 |
+
gr.Textbox(label="Question"),
|
79 |
+
gr.Textbox(label="Answer"),
|
80 |
+
gr.Textbox(label="Numbers of question")],
|
81 |
+
outputs="text" # Image output
|
82 |
+
)
|
83 |
+
|
84 |
+
iface.launch()
|