| 
							 | 
						from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import librosa | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						model_id = "facebook/mms-lid-1024" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						processor = AutoFeatureExtractor.from_pretrained(model_id) | 
					
					
						
						| 
							 | 
						model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						LID_SAMPLING_RATE = 16_000 | 
					
					
						
						| 
							 | 
						LID_TOPK = 10 | 
					
					
						
						| 
							 | 
						LID_THRESHOLD = 0.33 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						LID_LANGUAGES = {} | 
					
					
						
						| 
							 | 
						with open(f"data/lid/all_langs.tsv") as f: | 
					
					
						
						| 
							 | 
						    for line in f: | 
					
					
						
						| 
							 | 
						        iso, name = line.split(" ", 1) | 
					
					
						
						| 
							 | 
						        LID_LANGUAGES[iso] = name | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def identify(audio_source=None, microphone=None, file_upload=None): | 
					
					
						
						| 
							 | 
						    if audio_source is None and microphone is None and file_upload is None: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        return {} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if type(microphone) is dict: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        microphone = microphone["name"] | 
					
					
						
						| 
							 | 
						    audio_fp = ( | 
					
					
						
						| 
							 | 
						        file_upload if "upload" in str(audio_source or "").lower() else microphone | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    audio_samples = librosa.load(audio_fp, sr=LID_SAMPLING_RATE, mono=True)[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    inputs = processor( | 
					
					
						
						| 
							 | 
						        audio_samples, sampling_rate=LID_SAMPLING_RATE, return_tensors="pt" | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if torch.cuda.is_available(): | 
					
					
						
						| 
							 | 
						        device = torch.device("cuda") | 
					
					
						
						| 
							 | 
						    elif ( | 
					
					
						
						| 
							 | 
						        hasattr(torch.backends, "mps") | 
					
					
						
						| 
							 | 
						        and torch.backends.mps.is_available() | 
					
					
						
						| 
							 | 
						        and torch.backends.mps.is_built() | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        device = torch.device("mps") | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        device = torch.device("cpu") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model.to(device) | 
					
					
						
						| 
							 | 
						    inputs = inputs.to(device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    with torch.no_grad(): | 
					
					
						
						| 
							 | 
						        logit = model(**inputs).logits | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    logit_lsm = torch.log_softmax(logit.squeeze(), dim=-1) | 
					
					
						
						| 
							 | 
						    scores, indices = torch.topk(logit_lsm, 5, dim=-1) | 
					
					
						
						| 
							 | 
						    scores, indices = torch.exp(scores).to("cpu").tolist(), indices.to("cpu").tolist() | 
					
					
						
						| 
							 | 
						    iso2score = {model.config.id2label[int(i)]: s for s, i in zip(scores, indices)} | 
					
					
						
						| 
							 | 
						    if max(iso2score.values()) < LID_THRESHOLD: | 
					
					
						
						| 
							 | 
						        return "Low confidence in the language identification predictions. Output is not shown!" | 
					
					
						
						| 
							 | 
						    return {LID_LANGUAGES[iso]: score for iso, score in iso2score.items()} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						LID_EXAMPLES = [ | 
					
					
						
						| 
							 | 
						    [None, "./assets/english.mp3", None], | 
					
					
						
						| 
							 | 
						    [None, "./assets/tamil.mp3", None], | 
					
					
						
						| 
							 | 
						    [None, "./assets/burmese.mp3", None], | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						
 |