Spaces:
Running
Running
Update README.md
Browse files
README.md
CHANGED
@@ -1,40 +1,30 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
-
short_description: NO GPU, Multi LLMs Uses
|
12 |
-
models:
|
13 |
-
- Qwen/Qwen2.5-72B-Instruct
|
14 |
-
- Qwen/Qwen2.5-3B-Instruct
|
15 |
-
- Qwen/Qwen2.5-0.5B-Instruct
|
16 |
-
- Qwen/Qwen2.5-Coder-32B-Instruct
|
17 |
-
- meta-llama/Llama-3.3-70B-Instruct
|
18 |
-
- meta-llama/Llama-3.1-70B-Instruct
|
19 |
-
- meta-llama/Llama-3.0-70B-Instruct
|
20 |
-
- meta-llama/Llama-3.2-3B-Instruct
|
21 |
-
- meta-llama/Llama-3.2-1B-Instruct
|
22 |
-
- meta-llama/Llama-3.1-8B-Instruct
|
23 |
-
- mistralai/Mistral-Nemo-Instruct-2407
|
24 |
-
- mistralai/Mixtral-8x7B-Instruct-v0.1
|
25 |
-
- mistralai/Mistral-7B-Instruct-v0.3
|
26 |
-
- mistralai/Mistral-7B-Instruct-v0.2
|
27 |
-
- microsoft/Phi-3.5-mini-instruct
|
28 |
-
- microsoft/Phi-3-mini-128k-instruct
|
29 |
-
- microsoft/Phi-3-mini-4k-instruct
|
30 |
-
- NousResearch/Hermes-3-Llama-3.1-8B
|
31 |
-
- NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO
|
32 |
-
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
|
33 |
-
- deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
|
34 |
-
- HuggingFaceH4/zephyr-7b-beta
|
35 |
-
- HuggingFaceTB/SmolLM2-360M-Instruct
|
36 |
-
- tiiuae/falcon-7b-instruct
|
37 |
-
- 01-ai/Yi-1.5-34B-Chat
|
38 |
---
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Optillm
|
3 |
+
emoji: 💬
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.6.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
+
## References
|
14 |
+
|
15 |
+
- [Chain of Code: Reasoning with a Language Model-Augmented Code Emulator](https://arxiv.org/abs/2312.04474) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/plugins/coc_plugin.py)
|
16 |
+
- [Entropy Based Sampling and Parallel CoT Decoding](https://github.com/xjdr-alt/entropix) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/entropy_decoding.py)
|
17 |
+
- [Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation](https://arxiv.org/abs/2409.12941) - [Evaluation script](https://github.com/codelion/optillm/blob/main/scripts/eval_frames_benchmark.py)
|
18 |
+
- [Writing in the Margins: Better Inference Pattern for Long Context Retrieval](https://www.arxiv.org/abs/2408.14906) - [Inspired the implementation of the memory plugin](https://github.com/codelion/optillm/blob/main/optillm/plugins/memory_plugin.py)
|
19 |
+
- [Chain-of-Thought Reasoning Without Prompting](https://arxiv.org/abs/2402.10200) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/cot_decoding.py)
|
20 |
+
- [Re-Reading Improves Reasoning in Large Language Models](https://arxiv.org/abs/2309.06275) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/reread.py)
|
21 |
+
- [In-Context Principle Learning from Mistakes](https://arxiv.org/abs/2402.05403) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/leap.py)
|
22 |
+
- [Planning In Natural Language Improves LLM Search For Code Generation](https://arxiv.org/abs/2409.03733) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/plansearch.py)
|
23 |
+
- [Self-Consistency Improves Chain of Thought Reasoning in Language Models](https://arxiv.org/abs/2203.11171) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/self_consistency.py)
|
24 |
+
- [Mutual Reasoning Makes Smaller LLMs Stronger Problem-Solvers](https://arxiv.org/abs/2408.06195) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/rstar.py)
|
25 |
+
- [Mixture-of-Agents Enhances Large Language Model Capabilities](https://arxiv.org/abs/2406.04692) - [Inspired the implementation of moa](https://github.com/codelion/optillm/blob/main/optillm/moa.py)
|
26 |
+
- [Prover-Verifier Games improve legibility of LLM outputs](https://arxiv.org/abs/2407.13692) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/pvg.py)
|
27 |
+
- [Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning](https://arxiv.org/abs/2405.00451) - [Inspired the implementation of mcts](https://github.com/codelion/optillm/blob/main/optillm/mcts.py)
|
28 |
+
- [Unsupervised Evaluation of Code LLMs with Round-Trip Correctness](https://arxiv.org/abs/2402.08699) - [Inspired the implementation of rto](https://github.com/codelion/optillm/blob/main/optillm/rto.py)
|
29 |
+
- [Patched MOA: optimizing inference for diverse software development tasks](https://arxiv.org/abs/2407.18521) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/moa.py)
|
30 |
+
- [Patched RTC: evaluating LLMs for diverse software development tasks](https://arxiv.org/abs/2407.16557) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/rto.py)
|