Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,177 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from openai import OpenAI
|
3 |
+
import os
|
4 |
+
from datetime import datetime
|
5 |
+
|
6 |
+
# App title and description
|
7 |
+
APP_TITLE = "NO GPU, Multi LLMs Uses"
|
8 |
+
APP_DESCRIPTION = "Access and chat with multiple language models without requiring a GPU"
|
9 |
+
|
10 |
+
# Load environment variables
|
11 |
+
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
12 |
+
client = OpenAI(
|
13 |
+
base_url="https://api-inference.huggingface.co/v1/",
|
14 |
+
api_key=ACCESS_TOKEN,
|
15 |
+
)
|
16 |
+
|
17 |
+
# Model categories for better organization
|
18 |
+
MODEL_CATEGORIES = {
|
19 |
+
"Qwen": [
|
20 |
+
"Qwen/Qwen2.5-72B-Instruct",
|
21 |
+
"Qwen/Qwen2.5-3B-Instruct",
|
22 |
+
"Qwen/Qwen2.5-0.5B-Instruct",
|
23 |
+
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
24 |
+
],
|
25 |
+
"Meta LLaMa": [
|
26 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
27 |
+
"meta-llama/Llama-3.1-70B-Instruct",
|
28 |
+
"meta-llama/Llama-3.0-70B-Instruct",
|
29 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
30 |
+
"meta-llama/Llama-3.2-1B-Instruct",
|
31 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
32 |
+
],
|
33 |
+
"Mistral": [
|
34 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
35 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
36 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
37 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
38 |
+
],
|
39 |
+
"Microsoft Phi": [
|
40 |
+
"microsoft/Phi-3.5-mini-instruct",
|
41 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
42 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
43 |
+
],
|
44 |
+
"Other Models": [
|
45 |
+
|
46 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
47 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
48 |
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
49 |
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
50 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
51 |
+
"HuggingFaceTB/SmolLM2-360M-Instruct",
|
52 |
+
"tiiuae/falcon-7b-instruct",
|
53 |
+
"01-ai/Yi-1.5-34B-Chat",
|
54 |
+
]
|
55 |
+
}
|
56 |
+
|
57 |
+
# Flatten the model list
|
58 |
+
ALL_MODELS = [m for models in MODEL_CATEGORIES.values() for m in models]
|
59 |
+
|
60 |
+
def get_model_info(model_name):
|
61 |
+
parts = model_name.split('/')
|
62 |
+
if len(parts) != 2:
|
63 |
+
return f"**Model:** {model_name}\n**Format:** Unknown"
|
64 |
+
org, model = parts
|
65 |
+
import re
|
66 |
+
size_match = re.search(r'(\d+\.?\d*)B', model)
|
67 |
+
size = size_match.group(1) + "B" if size_match else "Unknown"
|
68 |
+
return f"**Organization:** {org}\n**Model:** {model}\n**Size:** {size}"
|
69 |
+
|
70 |
+
def respond(
|
71 |
+
message,
|
72 |
+
history,
|
73 |
+
system_message,
|
74 |
+
max_tokens,
|
75 |
+
temperature,
|
76 |
+
top_p,
|
77 |
+
frequency_penalty,
|
78 |
+
seed,
|
79 |
+
selected_model
|
80 |
+
):
|
81 |
+
# Prepare messages
|
82 |
+
if seed == -1:
|
83 |
+
seed = None
|
84 |
+
messages = [{"role": "system", "content": system_message}]
|
85 |
+
for user_msg, assistant_msg in history:
|
86 |
+
if user_msg:
|
87 |
+
messages.append({"role": "user", "content": user_msg})
|
88 |
+
if assistant_msg:
|
89 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
90 |
+
messages.append({"role": "user", "content": message})
|
91 |
+
|
92 |
+
model_to_use = selected_model or ALL_MODELS[0]
|
93 |
+
|
94 |
+
new_history = list(history) + [(message, "")]
|
95 |
+
current_response = ""
|
96 |
+
try:
|
97 |
+
for chunk in client.chat.completions.create(
|
98 |
+
model=model_to_use,
|
99 |
+
max_tokens=max_tokens,
|
100 |
+
stream=True,
|
101 |
+
temperature=temperature,
|
102 |
+
top_p=top_p,
|
103 |
+
frequency_penalty=frequency_penalty,
|
104 |
+
seed=seed,
|
105 |
+
messages=messages,
|
106 |
+
):
|
107 |
+
delta = chunk.choices[0].delta.content
|
108 |
+
if delta:
|
109 |
+
current_response += delta
|
110 |
+
new_history[-1] = (message, current_response)
|
111 |
+
yield new_history
|
112 |
+
except Exception as e:
|
113 |
+
err = f"Error: {e}"
|
114 |
+
new_history[-1] = (message, err)
|
115 |
+
yield new_history
|
116 |
+
|
117 |
+
with gr.Blocks(title=APP_TITLE, theme=gr.themes.Soft()) as demo:
|
118 |
+
gr.Markdown(f"## {APP_TITLE}\n\n{APP_DESCRIPTION}")
|
119 |
+
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column(scale=2):
|
122 |
+
# Model selection via Dropdown
|
123 |
+
selected_model = gr.Dropdown(
|
124 |
+
choices=ALL_MODELS,
|
125 |
+
value=ALL_MODELS[0],
|
126 |
+
label="Select Model"
|
127 |
+
)
|
128 |
+
model_info = gr.Markdown(get_model_info(ALL_MODELS[0]))
|
129 |
+
|
130 |
+
def update_info(model_name):
|
131 |
+
return get_model_info(model_name)
|
132 |
+
selected_model.change(
|
133 |
+
fn=update_info,
|
134 |
+
inputs=[selected_model],
|
135 |
+
outputs=[model_info]
|
136 |
+
)
|
137 |
+
|
138 |
+
# Conversation settings
|
139 |
+
system_message = gr.Textbox(
|
140 |
+
value="You are a helpful assistant.",
|
141 |
+
label="System Prompt",
|
142 |
+
lines=2
|
143 |
+
)
|
144 |
+
|
145 |
+
max_tokens = gr.Slider(1, 4096, value=512, label="Max New Tokens")
|
146 |
+
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
|
147 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
|
148 |
+
freq_penalty = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
149 |
+
seed = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 random)")
|
150 |
+
|
151 |
+
with gr.Column(scale=3):
|
152 |
+
chatbot = gr.Chatbot()
|
153 |
+
msg = gr.Textbox(placeholder="Type your message here...", show_label=False)
|
154 |
+
send_btn = gr.Button("Send")
|
155 |
+
|
156 |
+
send_btn.click(
|
157 |
+
fn=respond,
|
158 |
+
inputs=[
|
159 |
+
msg, chatbot, system_message,
|
160 |
+
max_tokens, temperature, top_p,
|
161 |
+
freq_penalty, seed, selected_model
|
162 |
+
],
|
163 |
+
outputs=[chatbot],
|
164 |
+
queue=True
|
165 |
+
)
|
166 |
+
msg.submit(
|
167 |
+
fn=respond,
|
168 |
+
inputs=[
|
169 |
+
msg, chatbot, system_message,
|
170 |
+
max_tokens, temperature, top_p,
|
171 |
+
freq_penalty, seed, selected_model
|
172 |
+
],
|
173 |
+
outputs=[chatbot],
|
174 |
+
queue=True
|
175 |
+
)
|
176 |
+
|
177 |
+
demo.launch()
|