Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -4,12 +4,6 @@ from transformers import RobertaTokenizer
|
|
| 4 |
import os
|
| 5 |
from transformers import RobertaForSequenceClassification
|
| 6 |
import torch.serialization
|
| 7 |
-
import torch
|
| 8 |
-
from transformers import RobertaTokenizer, RobertaForSequenceClassification, Trainer, TrainingArguments
|
| 9 |
-
from torch.utils.data import Dataset
|
| 10 |
-
import pandas as pd
|
| 11 |
-
from sklearn.model_selection import train_test_split
|
| 12 |
-
import numpy as np
|
| 13 |
# Initialize Flask app
|
| 14 |
app = Flask(__name__)
|
| 15 |
|
|
@@ -31,39 +25,38 @@ def home():
|
|
| 31 |
# @app.route("/predict", methods=["POST"])
|
| 32 |
@app.route("/predict")
|
| 33 |
def predict():
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
# Run the Flask app
|
| 68 |
if __name__ == "__main__":
|
| 69 |
app.run(host="0.0.0.0", port=7860)
|
|
|
|
| 4 |
import os
|
| 5 |
from transformers import RobertaForSequenceClassification
|
| 6 |
import torch.serialization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
# Initialize Flask app
|
| 8 |
app = Flask(__name__)
|
| 9 |
|
|
|
|
| 25 |
# @app.route("/predict", methods=["POST"])
|
| 26 |
@app.route("/predict")
|
| 27 |
def predict():
|
| 28 |
+
try:
|
| 29 |
+
# Debugging: print input code to check if the request is received correctly
|
| 30 |
+
print("Received code:", request.get_json()["code"])
|
| 31 |
+
|
| 32 |
+
data = request.get_json()
|
| 33 |
+
if "code" not in data:
|
| 34 |
+
return jsonify({"error": "Missing 'code' parameter"}), 400
|
| 35 |
+
|
| 36 |
+
code_input = data["code"]
|
| 37 |
+
|
| 38 |
+
# Tokenize the input code using the CodeBERT tokenizer
|
| 39 |
+
inputs = tokenizer(
|
| 40 |
+
code_input,
|
| 41 |
+
return_tensors='pt',
|
| 42 |
+
truncation=True,
|
| 43 |
+
padding='max_length',
|
| 44 |
+
max_length=512
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# Make prediction using the model
|
| 48 |
+
with torch.no_grad():
|
| 49 |
+
outputs = model(**inputs)
|
| 50 |
+
prediction = outputs.logits.squeeze().item() # Extract the predicted score (single float)
|
| 51 |
+
|
| 52 |
+
print(f"Predicted score: {prediction}") # Debugging: Print prediction
|
| 53 |
+
|
| 54 |
+
return jsonify({"predicted_score": prediction})
|
| 55 |
+
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return jsonify({"error": str(e)}), 500
|
| 58 |
+
|
| 59 |
+
|
|
|
|
| 60 |
# Run the Flask app
|
| 61 |
if __name__ == "__main__":
|
| 62 |
app.run(host="0.0.0.0", port=7860)
|