ElPremOoO's picture
Update main.py
e10e5ff verified
raw
history blame
1.83 kB
from flask import Flask, request, jsonify
import torch
from transformers import RobertaTokenizer, RobertaForSequenceClassification, RobertaConfig
import os
app = Flask(__name__)
# Load model and tokenizer
def load_model():
# Load saved config and weights
checkpoint = torch.load("codebert_vulnerability_scorer.pth", map_location=torch.device('cpu'))
config = RobertaConfig.from_dict(checkpoint['config'])
# Initialize model with loaded config
model = RobertaForSequenceClassification(config)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
return model
# Load components
try:
tokenizer = RobertaTokenizer.from_pretrained("./tokenizer_vulnerability")
model = load_model()
print("Model and tokenizer loaded successfully!")
except Exception as e:
print(f"Error loading model: {str(e)}")
@app.route("/")
def home():
return request.url
@app.route("/predict")
def predict():
try:
# Get code from URL parameter
code = request.args.get("code")
if not code:
return jsonify({"error": "Missing 'code' URL parameter"}), 400
# Tokenize input
inputs = tokenizer(
code,
truncation=True,
padding='max_length',
max_length=512,
return_tensors='pt'
)
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
# Apply sigmoid and format score
score = torch.sigmoid(outputs.logits).item()
return jsonify({
"vulnerability_score": round(score, 4),
"processed_code": code[:500] + "..." if len(code) > 500 else code
})
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)