Kareem94's picture
Modify request type + take params from JSON body.
c7bca26 verified
raw
history blame
1.91 kB
from flask import Flask, request, jsonify
import torch
from transformers import RobertaTokenizer, RobertaForSequenceClassification, RobertaConfig
import os
app = Flask(__name__)
# Load model and tokenizer
def load_model():
# Load saved config and weights
# Updated to 'codebert_vulnerability_scorer.pth' as per user's request
checkpoint = torch.load("codebert_vulnerability_scorer.pth", map_location=torch.device('cpu'))
config = RobertaConfig.from_dict(checkpoint['config'])
# Initialize model with loaded config
model = RobertaForSequenceClassification(config)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
return model
# Load components
try:
# Updated to './tokenizer_vulnerability' as per user's request
tokenizer = RobertaTokenizer.from_pretrained("./tokenizer_vulnerability")
model = load_model()
print("Model and tokenizer loaded successfully!")
except Exception as e:
print(f"Error loading model: {str(e)}")
@app.route("/")
def home():
return request.url
@app.route("/predict", methods=["POST"])
def predict():
try:
data = request.get_json()
if not data or "code" not in data:
return jsonify({"error": "Missing 'code' in request body"}), 400
code = data["code"]
# Tokenize input
inputs = tokenizer(
code,
truncation=True,
padding='max_length',
max_length=512,
return_tensors='pt'
)
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
# Apply sigmoid and format score
score = torch.sigmoid(outputs.logits).item()
return jsonify({
"score": round(score, 4)
})
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)