File size: 2,469 Bytes
1b41e6d
 
 
 
 
ac7fa1f
f1e71b2
 
 
abd911f
 
 
 
1b41e6d
f1e71b2
1b41e6d
ac7fa1f
f1e71b2
ac7fa1f
f1e71b2
ac7fa1f
f1e71b2
100a302
c7b4f55
f1e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b41e6d
c7b4f55
f1e71b2
1b41e6d
f1e71b2
 
ac7fa1f
c7b4f55
ac7fa1f
 
f1e71b2
100a302
ac7fa1f
 
 
f1e71b2
 
ac7fa1f
f1e71b2
ac7fa1f
f1e71b2
 
100a302
f1e71b2
 
100a302
f1e71b2
c7b4f55
f1e71b2
 
1b41e6d
 
c7b4f55
1b41e6d
f1e71b2
c7b4f55
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gradio as gr
import edge_tts
import asyncio
import tempfile

# 1) Load voices once at startup
def load_voices():
    loop = asyncio.get_event_loop()
    voices = loop.run_until_complete(edge_tts.list_voices())
    return {
        f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName']
        for v in voices
    }

VOICES = load_voices()

# 2) Async TTS worker
async def _text_to_speech(text, short_name, rate_str, pitch_str):
    comm = edge_tts.Communicate(text, short_name, rate=rate_str, pitch=pitch_str)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
        await comm.save(tmp.name)
        return tmp.name

# 3) Sync wrapper for Gradio callback
def tts_interface(text, voice_choice, rate, pitch):
    if not text.strip():
        return None, "🚨 Please enter some text."
    if not voice_choice:
        return None, "🚨 Please select a voice."
    short_name = voice_choice.split(" - ")[0]
    rate_str  = f"{rate:+d}%"
    pitch_str = f"{pitch:+d}Hz"
    try:
        audio_path = asyncio.get_event_loop().run_until_complete(
            _text_to_speech(text, short_name, rate_str, pitch_str)
        )
        return audio_path, ""
    except Exception as e:
        return None, f"❌ TTS failed: {e}"

# 4) Build the UI
def create_demo():
    with gr.Blocks(analytics_enabled=False) as demo:
        gr.Markdown("# 🎙️ Edge TTS on Hugging Face Spaces")

        gr.Markdown(
            "**Convert your text to speech** using Microsoft Edge’s neural voices. "
            "Adjust rate and pitch to fine-tune the output."
        )

        with gr.Row():
            txt   = gr.Textbox(label="Input Text", lines=5, placeholder="Type something…")
            vox   = gr.Dropdown(choices=list(VOICES.keys()), label="Voice")
            rate  = gr.Slider(-50, 50, value=0, label="Rate (%)")
            pitch = gr.Slider(-20, 20, value=0, label="Pitch (Hz)")

        btn       = gr.Button("Generate Speech")
        audio_out = gr.Audio(type="filepath", label="Audio Output")
        warn_md   = gr.Markdown("", label="Warnings / Errors")

        btn.click(
            fn=tts_interface,
            inputs=[txt, vox, rate, pitch],
            outputs=[audio_out, warn_md]
        )

        # Enable the queue so the API actually gets registered
        demo.queue()

    return demo

# 5) Launch with SSR disabled
if __name__ == "__main__":
    demo = create_demo()
    demo.launch(ssr=False)