File size: 1,610 Bytes
5974e33 2012b67 5974e33 2012b67 5974e33 2012b67 5974e33 2012b67 5d6c551 2012b67 5974e33 2012b67 5974e33 2012b67 5d6c551 2012b67 5d6c551 2012b67 5974e33 5d6c551 10092ae 2012b67 5d6c551 2012b67 5974e33 2012b67 5974e33 5d6c551 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import sys
import os
# Make sure Python can find src/f5_tts
sys.path.append(os.path.join(os.path.dirname(__file__), "src"))
import gdown
import gradio as gr
import torch
import yaml
import numpy as np
from f5_tts.infer.utils_infer import build_model_from_config, inference
# Google Drive model + vocab links
MODEL_URL = "https://drive.google.com/uc?id=1llj4Z3uzKCXL_0EIuXqIFtXYm6lraaIz"
VOCAB_URL = "https://drive.google.com/uc?id=1YNluHbc_bqhj7B1wp9by4U0-LfCPCeLL"
# Local storage paths (download at runtime)
MODEL_PATH = "checkpoints/model_1250000.safetensors"
VOCAB_PATH = "checkpoints/vocab.txt"
CONFIG_PATH = "src/f5_tts/configs/F5TTS_Base.yaml"
# Create checkpoints folder
os.makedirs("checkpoints", exist_ok=True)
# Download model + vocab if not already present
if not os.path.exists(MODEL_PATH):
print("🔽 Downloading model...")
gdown.download(MODEL_URL, MODEL_PATH, quiet=False)
if not os.path.exists(VOCAB_PATH):
print("🔽 Downloading vocab...")
gdown.download(VOCAB_URL, VOCAB_PATH, quiet=False)
# Load model config
if not os.path.exists(CONFIG_PATH):
raise FileNotFoundError(f"Config file not found: {CONFIG_PATH}")
with open(CONFIG_PATH, "r") as f:
config = yaml.safe_load(f)
# Build model
model = build_model_from_config(config, MODEL_PATH, VOCAB_PATH)
# Inference function for Gradio
def infer_text(text):
wav = inference(model, text, config)
return (22050, np.array(wav))
# Gradio UI
demo = gr.Interface(
fn=infer_text,
inputs="text",
outputs="audio",
title="F5-TTS Text-to-Speech"
)
if __name__ == "__main__":
demo.launch()
|