make a structure first
Browse files- src/f5_tts/api.py +5 -6
- src/f5_tts/data/Emilia_ZH_EN_pinyin/vocab.txt +0 -2545
- src/f5_tts/data/inference-cli.toml +0 -10
- src/f5_tts/{scripts → eval}/eval_infer_batch.py +0 -0
- src/f5_tts/{scripts → eval}/eval_infer_batch.sh +0 -0
- src/f5_tts/{scripts → eval}/eval_librispeech_test_clean.py +0 -0
- src/f5_tts/{scripts → eval}/eval_seedtts_testset.py +0 -0
- src/f5_tts/{data → eval/eval_testset}/librispeech_pc_test_clean_cross_sentence.lst +0 -0
- src/f5_tts/{inference_cli.py → infer/infer_cli.py} +1 -1
- src/f5_tts/{gradio_app.py → infer/infer_gradio.py} +0 -0
- src/f5_tts/{speech_edit.py → infer/speech_edit.py} +0 -0
- src/f5_tts/scripts/count_params_gflops.py +2 -2
- src/f5_tts/{finetune_cli.py → train/finetune_cli.py} +128 -128
- src/f5_tts/{finetune_gradio.py → train/finetune_gradio.py} +944 -944
- src/f5_tts/{train.py → train/train.py} +0 -0
src/f5_tts/api.py
CHANGED
@@ -1,15 +1,14 @@
|
|
|
|
|
|
|
|
|
|
1 |
import soundfile as sf
|
2 |
import torch
|
3 |
-
import tqdm
|
4 |
from cached_path import cached_path
|
5 |
|
6 |
from f5_tts.model import DiT, UNetT
|
7 |
-
from f5_tts.model.utils import save_spectrogram
|
8 |
-
|
9 |
from f5_tts.model.utils_infer import load_vocoder, load_model, infer_process, remove_silence_for_generated_wav
|
10 |
-
from f5_tts.model.utils import seed_everything
|
11 |
-
import random
|
12 |
-
import sys
|
13 |
|
14 |
|
15 |
class F5TTS:
|
|
|
1 |
+
import random
|
2 |
+
import sys
|
3 |
+
import tqdm
|
4 |
+
|
5 |
import soundfile as sf
|
6 |
import torch
|
|
|
7 |
from cached_path import cached_path
|
8 |
|
9 |
from f5_tts.model import DiT, UNetT
|
10 |
+
from f5_tts.model.utils import seed_everything, save_spectrogram
|
|
|
11 |
from f5_tts.model.utils_infer import load_vocoder, load_model, infer_process, remove_silence_for_generated_wav
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
class F5TTS:
|
src/f5_tts/data/Emilia_ZH_EN_pinyin/vocab.txt
DELETED
@@ -1,2545 +0,0 @@
|
|
1 |
-
|
2 |
-
!
|
3 |
-
"
|
4 |
-
#
|
5 |
-
$
|
6 |
-
%
|
7 |
-
&
|
8 |
-
'
|
9 |
-
(
|
10 |
-
)
|
11 |
-
*
|
12 |
-
+
|
13 |
-
,
|
14 |
-
-
|
15 |
-
.
|
16 |
-
/
|
17 |
-
0
|
18 |
-
1
|
19 |
-
2
|
20 |
-
3
|
21 |
-
4
|
22 |
-
5
|
23 |
-
6
|
24 |
-
7
|
25 |
-
8
|
26 |
-
9
|
27 |
-
:
|
28 |
-
;
|
29 |
-
=
|
30 |
-
>
|
31 |
-
?
|
32 |
-
@
|
33 |
-
A
|
34 |
-
B
|
35 |
-
C
|
36 |
-
D
|
37 |
-
E
|
38 |
-
F
|
39 |
-
G
|
40 |
-
H
|
41 |
-
I
|
42 |
-
J
|
43 |
-
K
|
44 |
-
L
|
45 |
-
M
|
46 |
-
N
|
47 |
-
O
|
48 |
-
P
|
49 |
-
Q
|
50 |
-
R
|
51 |
-
S
|
52 |
-
T
|
53 |
-
U
|
54 |
-
V
|
55 |
-
W
|
56 |
-
X
|
57 |
-
Y
|
58 |
-
Z
|
59 |
-
[
|
60 |
-
\
|
61 |
-
]
|
62 |
-
_
|
63 |
-
a
|
64 |
-
a1
|
65 |
-
ai1
|
66 |
-
ai2
|
67 |
-
ai3
|
68 |
-
ai4
|
69 |
-
an1
|
70 |
-
an3
|
71 |
-
an4
|
72 |
-
ang1
|
73 |
-
ang2
|
74 |
-
ang4
|
75 |
-
ao1
|
76 |
-
ao2
|
77 |
-
ao3
|
78 |
-
ao4
|
79 |
-
b
|
80 |
-
ba
|
81 |
-
ba1
|
82 |
-
ba2
|
83 |
-
ba3
|
84 |
-
ba4
|
85 |
-
bai1
|
86 |
-
bai2
|
87 |
-
bai3
|
88 |
-
bai4
|
89 |
-
ban1
|
90 |
-
ban2
|
91 |
-
ban3
|
92 |
-
ban4
|
93 |
-
bang1
|
94 |
-
bang2
|
95 |
-
bang3
|
96 |
-
bang4
|
97 |
-
bao1
|
98 |
-
bao2
|
99 |
-
bao3
|
100 |
-
bao4
|
101 |
-
bei
|
102 |
-
bei1
|
103 |
-
bei2
|
104 |
-
bei3
|
105 |
-
bei4
|
106 |
-
ben1
|
107 |
-
ben2
|
108 |
-
ben3
|
109 |
-
ben4
|
110 |
-
beng
|
111 |
-
beng1
|
112 |
-
beng2
|
113 |
-
beng3
|
114 |
-
beng4
|
115 |
-
bi1
|
116 |
-
bi2
|
117 |
-
bi3
|
118 |
-
bi4
|
119 |
-
bian1
|
120 |
-
bian2
|
121 |
-
bian3
|
122 |
-
bian4
|
123 |
-
biao1
|
124 |
-
biao2
|
125 |
-
biao3
|
126 |
-
bie1
|
127 |
-
bie2
|
128 |
-
bie3
|
129 |
-
bie4
|
130 |
-
bin1
|
131 |
-
bin4
|
132 |
-
bing1
|
133 |
-
bing2
|
134 |
-
bing3
|
135 |
-
bing4
|
136 |
-
bo
|
137 |
-
bo1
|
138 |
-
bo2
|
139 |
-
bo3
|
140 |
-
bo4
|
141 |
-
bu2
|
142 |
-
bu3
|
143 |
-
bu4
|
144 |
-
c
|
145 |
-
ca1
|
146 |
-
cai1
|
147 |
-
cai2
|
148 |
-
cai3
|
149 |
-
cai4
|
150 |
-
can1
|
151 |
-
can2
|
152 |
-
can3
|
153 |
-
can4
|
154 |
-
cang1
|
155 |
-
cang2
|
156 |
-
cao1
|
157 |
-
cao2
|
158 |
-
cao3
|
159 |
-
ce4
|
160 |
-
cen1
|
161 |
-
cen2
|
162 |
-
ceng1
|
163 |
-
ceng2
|
164 |
-
ceng4
|
165 |
-
cha1
|
166 |
-
cha2
|
167 |
-
cha3
|
168 |
-
cha4
|
169 |
-
chai1
|
170 |
-
chai2
|
171 |
-
chan1
|
172 |
-
chan2
|
173 |
-
chan3
|
174 |
-
chan4
|
175 |
-
chang1
|
176 |
-
chang2
|
177 |
-
chang3
|
178 |
-
chang4
|
179 |
-
chao1
|
180 |
-
chao2
|
181 |
-
chao3
|
182 |
-
che1
|
183 |
-
che2
|
184 |
-
che3
|
185 |
-
che4
|
186 |
-
chen1
|
187 |
-
chen2
|
188 |
-
chen3
|
189 |
-
chen4
|
190 |
-
cheng1
|
191 |
-
cheng2
|
192 |
-
cheng3
|
193 |
-
cheng4
|
194 |
-
chi1
|
195 |
-
chi2
|
196 |
-
chi3
|
197 |
-
chi4
|
198 |
-
chong1
|
199 |
-
chong2
|
200 |
-
chong3
|
201 |
-
chong4
|
202 |
-
chou1
|
203 |
-
chou2
|
204 |
-
chou3
|
205 |
-
chou4
|
206 |
-
chu1
|
207 |
-
chu2
|
208 |
-
chu3
|
209 |
-
chu4
|
210 |
-
chua1
|
211 |
-
chuai1
|
212 |
-
chuai2
|
213 |
-
chuai3
|
214 |
-
chuai4
|
215 |
-
chuan1
|
216 |
-
chuan2
|
217 |
-
chuan3
|
218 |
-
chuan4
|
219 |
-
chuang1
|
220 |
-
chuang2
|
221 |
-
chuang3
|
222 |
-
chuang4
|
223 |
-
chui1
|
224 |
-
chui2
|
225 |
-
chun1
|
226 |
-
chun2
|
227 |
-
chun3
|
228 |
-
chuo1
|
229 |
-
chuo4
|
230 |
-
ci1
|
231 |
-
ci2
|
232 |
-
ci3
|
233 |
-
ci4
|
234 |
-
cong1
|
235 |
-
cong2
|
236 |
-
cou4
|
237 |
-
cu1
|
238 |
-
cu4
|
239 |
-
cuan1
|
240 |
-
cuan2
|
241 |
-
cuan4
|
242 |
-
cui1
|
243 |
-
cui3
|
244 |
-
cui4
|
245 |
-
cun1
|
246 |
-
cun2
|
247 |
-
cun4
|
248 |
-
cuo1
|
249 |
-
cuo2
|
250 |
-
cuo4
|
251 |
-
d
|
252 |
-
da
|
253 |
-
da1
|
254 |
-
da2
|
255 |
-
da3
|
256 |
-
da4
|
257 |
-
dai1
|
258 |
-
dai2
|
259 |
-
dai3
|
260 |
-
dai4
|
261 |
-
dan1
|
262 |
-
dan2
|
263 |
-
dan3
|
264 |
-
dan4
|
265 |
-
dang1
|
266 |
-
dang2
|
267 |
-
dang3
|
268 |
-
dang4
|
269 |
-
dao1
|
270 |
-
dao2
|
271 |
-
dao3
|
272 |
-
dao4
|
273 |
-
de
|
274 |
-
de1
|
275 |
-
de2
|
276 |
-
dei3
|
277 |
-
den4
|
278 |
-
deng1
|
279 |
-
deng2
|
280 |
-
deng3
|
281 |
-
deng4
|
282 |
-
di1
|
283 |
-
di2
|
284 |
-
di3
|
285 |
-
di4
|
286 |
-
dia3
|
287 |
-
dian1
|
288 |
-
dian2
|
289 |
-
dian3
|
290 |
-
dian4
|
291 |
-
diao1
|
292 |
-
diao3
|
293 |
-
diao4
|
294 |
-
die1
|
295 |
-
die2
|
296 |
-
die4
|
297 |
-
ding1
|
298 |
-
ding2
|
299 |
-
ding3
|
300 |
-
ding4
|
301 |
-
diu1
|
302 |
-
dong1
|
303 |
-
dong3
|
304 |
-
dong4
|
305 |
-
dou1
|
306 |
-
dou2
|
307 |
-
dou3
|
308 |
-
dou4
|
309 |
-
du1
|
310 |
-
du2
|
311 |
-
du3
|
312 |
-
du4
|
313 |
-
duan1
|
314 |
-
duan2
|
315 |
-
duan3
|
316 |
-
duan4
|
317 |
-
dui1
|
318 |
-
dui4
|
319 |
-
dun1
|
320 |
-
dun3
|
321 |
-
dun4
|
322 |
-
duo1
|
323 |
-
duo2
|
324 |
-
duo3
|
325 |
-
duo4
|
326 |
-
e
|
327 |
-
e1
|
328 |
-
e2
|
329 |
-
e3
|
330 |
-
e4
|
331 |
-
ei2
|
332 |
-
en1
|
333 |
-
en4
|
334 |
-
er
|
335 |
-
er2
|
336 |
-
er3
|
337 |
-
er4
|
338 |
-
f
|
339 |
-
fa1
|
340 |
-
fa2
|
341 |
-
fa3
|
342 |
-
fa4
|
343 |
-
fan1
|
344 |
-
fan2
|
345 |
-
fan3
|
346 |
-
fan4
|
347 |
-
fang1
|
348 |
-
fang2
|
349 |
-
fang3
|
350 |
-
fang4
|
351 |
-
fei1
|
352 |
-
fei2
|
353 |
-
fei3
|
354 |
-
fei4
|
355 |
-
fen1
|
356 |
-
fen2
|
357 |
-
fen3
|
358 |
-
fen4
|
359 |
-
feng1
|
360 |
-
feng2
|
361 |
-
feng3
|
362 |
-
feng4
|
363 |
-
fo2
|
364 |
-
fou2
|
365 |
-
fou3
|
366 |
-
fu1
|
367 |
-
fu2
|
368 |
-
fu3
|
369 |
-
fu4
|
370 |
-
g
|
371 |
-
ga1
|
372 |
-
ga2
|
373 |
-
ga3
|
374 |
-
ga4
|
375 |
-
gai1
|
376 |
-
gai2
|
377 |
-
gai3
|
378 |
-
gai4
|
379 |
-
gan1
|
380 |
-
gan2
|
381 |
-
gan3
|
382 |
-
gan4
|
383 |
-
gang1
|
384 |
-
gang2
|
385 |
-
gang3
|
386 |
-
gang4
|
387 |
-
gao1
|
388 |
-
gao2
|
389 |
-
gao3
|
390 |
-
gao4
|
391 |
-
ge1
|
392 |
-
ge2
|
393 |
-
ge3
|
394 |
-
ge4
|
395 |
-
gei2
|
396 |
-
gei3
|
397 |
-
gen1
|
398 |
-
gen2
|
399 |
-
gen3
|
400 |
-
gen4
|
401 |
-
geng1
|
402 |
-
geng3
|
403 |
-
geng4
|
404 |
-
gong1
|
405 |
-
gong3
|
406 |
-
gong4
|
407 |
-
gou1
|
408 |
-
gou2
|
409 |
-
gou3
|
410 |
-
gou4
|
411 |
-
gu
|
412 |
-
gu1
|
413 |
-
gu2
|
414 |
-
gu3
|
415 |
-
gu4
|
416 |
-
gua1
|
417 |
-
gua2
|
418 |
-
gua3
|
419 |
-
gua4
|
420 |
-
guai1
|
421 |
-
guai2
|
422 |
-
guai3
|
423 |
-
guai4
|
424 |
-
guan1
|
425 |
-
guan2
|
426 |
-
guan3
|
427 |
-
guan4
|
428 |
-
guang1
|
429 |
-
guang2
|
430 |
-
guang3
|
431 |
-
guang4
|
432 |
-
gui1
|
433 |
-
gui2
|
434 |
-
gui3
|
435 |
-
gui4
|
436 |
-
gun3
|
437 |
-
gun4
|
438 |
-
guo1
|
439 |
-
guo2
|
440 |
-
guo3
|
441 |
-
guo4
|
442 |
-
h
|
443 |
-
ha1
|
444 |
-
ha2
|
445 |
-
ha3
|
446 |
-
hai1
|
447 |
-
hai2
|
448 |
-
hai3
|
449 |
-
hai4
|
450 |
-
han1
|
451 |
-
han2
|
452 |
-
han3
|
453 |
-
han4
|
454 |
-
hang1
|
455 |
-
hang2
|
456 |
-
hang4
|
457 |
-
hao1
|
458 |
-
hao2
|
459 |
-
hao3
|
460 |
-
hao4
|
461 |
-
he1
|
462 |
-
he2
|
463 |
-
he4
|
464 |
-
hei1
|
465 |
-
hen2
|
466 |
-
hen3
|
467 |
-
hen4
|
468 |
-
heng1
|
469 |
-
heng2
|
470 |
-
heng4
|
471 |
-
hong1
|
472 |
-
hong2
|
473 |
-
hong3
|
474 |
-
hong4
|
475 |
-
hou1
|
476 |
-
hou2
|
477 |
-
hou3
|
478 |
-
hou4
|
479 |
-
hu1
|
480 |
-
hu2
|
481 |
-
hu3
|
482 |
-
hu4
|
483 |
-
hua1
|
484 |
-
hua2
|
485 |
-
hua4
|
486 |
-
huai2
|
487 |
-
huai4
|
488 |
-
huan1
|
489 |
-
huan2
|
490 |
-
huan3
|
491 |
-
huan4
|
492 |
-
huang1
|
493 |
-
huang2
|
494 |
-
huang3
|
495 |
-
huang4
|
496 |
-
hui1
|
497 |
-
hui2
|
498 |
-
hui3
|
499 |
-
hui4
|
500 |
-
hun1
|
501 |
-
hun2
|
502 |
-
hun4
|
503 |
-
huo
|
504 |
-
huo1
|
505 |
-
huo2
|
506 |
-
huo3
|
507 |
-
huo4
|
508 |
-
i
|
509 |
-
j
|
510 |
-
ji1
|
511 |
-
ji2
|
512 |
-
ji3
|
513 |
-
ji4
|
514 |
-
jia
|
515 |
-
jia1
|
516 |
-
jia2
|
517 |
-
jia3
|
518 |
-
jia4
|
519 |
-
jian1
|
520 |
-
jian2
|
521 |
-
jian3
|
522 |
-
jian4
|
523 |
-
jiang1
|
524 |
-
jiang2
|
525 |
-
jiang3
|
526 |
-
jiang4
|
527 |
-
jiao1
|
528 |
-
jiao2
|
529 |
-
jiao3
|
530 |
-
jiao4
|
531 |
-
jie1
|
532 |
-
jie2
|
533 |
-
jie3
|
534 |
-
jie4
|
535 |
-
jin1
|
536 |
-
jin2
|
537 |
-
jin3
|
538 |
-
jin4
|
539 |
-
jing1
|
540 |
-
jing2
|
541 |
-
jing3
|
542 |
-
jing4
|
543 |
-
jiong3
|
544 |
-
jiu1
|
545 |
-
jiu2
|
546 |
-
jiu3
|
547 |
-
jiu4
|
548 |
-
ju1
|
549 |
-
ju2
|
550 |
-
ju3
|
551 |
-
ju4
|
552 |
-
juan1
|
553 |
-
juan2
|
554 |
-
juan3
|
555 |
-
juan4
|
556 |
-
jue1
|
557 |
-
jue2
|
558 |
-
jue4
|
559 |
-
jun1
|
560 |
-
jun4
|
561 |
-
k
|
562 |
-
ka1
|
563 |
-
ka2
|
564 |
-
ka3
|
565 |
-
kai1
|
566 |
-
kai2
|
567 |
-
kai3
|
568 |
-
kai4
|
569 |
-
kan1
|
570 |
-
kan2
|
571 |
-
kan3
|
572 |
-
kan4
|
573 |
-
kang1
|
574 |
-
kang2
|
575 |
-
kang4
|
576 |
-
kao1
|
577 |
-
kao2
|
578 |
-
kao3
|
579 |
-
kao4
|
580 |
-
ke1
|
581 |
-
ke2
|
582 |
-
ke3
|
583 |
-
ke4
|
584 |
-
ken3
|
585 |
-
keng1
|
586 |
-
kong1
|
587 |
-
kong3
|
588 |
-
kong4
|
589 |
-
kou1
|
590 |
-
kou2
|
591 |
-
kou3
|
592 |
-
kou4
|
593 |
-
ku1
|
594 |
-
ku2
|
595 |
-
ku3
|
596 |
-
ku4
|
597 |
-
kua1
|
598 |
-
kua3
|
599 |
-
kua4
|
600 |
-
kuai3
|
601 |
-
kuai4
|
602 |
-
kuan1
|
603 |
-
kuan2
|
604 |
-
kuan3
|
605 |
-
kuang1
|
606 |
-
kuang2
|
607 |
-
kuang4
|
608 |
-
kui1
|
609 |
-
kui2
|
610 |
-
kui3
|
611 |
-
kui4
|
612 |
-
kun1
|
613 |
-
kun3
|
614 |
-
kun4
|
615 |
-
kuo4
|
616 |
-
l
|
617 |
-
la
|
618 |
-
la1
|
619 |
-
la2
|
620 |
-
la3
|
621 |
-
la4
|
622 |
-
lai2
|
623 |
-
lai4
|
624 |
-
lan2
|
625 |
-
lan3
|
626 |
-
lan4
|
627 |
-
lang1
|
628 |
-
lang2
|
629 |
-
lang3
|
630 |
-
lang4
|
631 |
-
lao1
|
632 |
-
lao2
|
633 |
-
lao3
|
634 |
-
lao4
|
635 |
-
le
|
636 |
-
le1
|
637 |
-
le4
|
638 |
-
lei
|
639 |
-
lei1
|
640 |
-
lei2
|
641 |
-
lei3
|
642 |
-
lei4
|
643 |
-
leng1
|
644 |
-
leng2
|
645 |
-
leng3
|
646 |
-
leng4
|
647 |
-
li
|
648 |
-
li1
|
649 |
-
li2
|
650 |
-
li3
|
651 |
-
li4
|
652 |
-
lia3
|
653 |
-
lian2
|
654 |
-
lian3
|
655 |
-
lian4
|
656 |
-
liang2
|
657 |
-
liang3
|
658 |
-
liang4
|
659 |
-
liao1
|
660 |
-
liao2
|
661 |
-
liao3
|
662 |
-
liao4
|
663 |
-
lie1
|
664 |
-
lie2
|
665 |
-
lie3
|
666 |
-
lie4
|
667 |
-
lin1
|
668 |
-
lin2
|
669 |
-
lin3
|
670 |
-
lin4
|
671 |
-
ling2
|
672 |
-
ling3
|
673 |
-
ling4
|
674 |
-
liu1
|
675 |
-
liu2
|
676 |
-
liu3
|
677 |
-
liu4
|
678 |
-
long1
|
679 |
-
long2
|
680 |
-
long3
|
681 |
-
long4
|
682 |
-
lou1
|
683 |
-
lou2
|
684 |
-
lou3
|
685 |
-
lou4
|
686 |
-
lu1
|
687 |
-
lu2
|
688 |
-
lu3
|
689 |
-
lu4
|
690 |
-
luan2
|
691 |
-
luan3
|
692 |
-
luan4
|
693 |
-
lun1
|
694 |
-
lun2
|
695 |
-
lun4
|
696 |
-
luo1
|
697 |
-
luo2
|
698 |
-
luo3
|
699 |
-
luo4
|
700 |
-
lv2
|
701 |
-
lv3
|
702 |
-
lv4
|
703 |
-
lve3
|
704 |
-
lve4
|
705 |
-
m
|
706 |
-
ma
|
707 |
-
ma1
|
708 |
-
ma2
|
709 |
-
ma3
|
710 |
-
ma4
|
711 |
-
mai2
|
712 |
-
mai3
|
713 |
-
mai4
|
714 |
-
man1
|
715 |
-
man2
|
716 |
-
man3
|
717 |
-
man4
|
718 |
-
mang2
|
719 |
-
mang3
|
720 |
-
mao1
|
721 |
-
mao2
|
722 |
-
mao3
|
723 |
-
mao4
|
724 |
-
me
|
725 |
-
mei2
|
726 |
-
mei3
|
727 |
-
mei4
|
728 |
-
men
|
729 |
-
men1
|
730 |
-
men2
|
731 |
-
men4
|
732 |
-
meng
|
733 |
-
meng1
|
734 |
-
meng2
|
735 |
-
meng3
|
736 |
-
meng4
|
737 |
-
mi1
|
738 |
-
mi2
|
739 |
-
mi3
|
740 |
-
mi4
|
741 |
-
mian2
|
742 |
-
mian3
|
743 |
-
mian4
|
744 |
-
miao1
|
745 |
-
miao2
|
746 |
-
miao3
|
747 |
-
miao4
|
748 |
-
mie1
|
749 |
-
mie4
|
750 |
-
min2
|
751 |
-
min3
|
752 |
-
ming2
|
753 |
-
ming3
|
754 |
-
ming4
|
755 |
-
miu4
|
756 |
-
mo1
|
757 |
-
mo2
|
758 |
-
mo3
|
759 |
-
mo4
|
760 |
-
mou1
|
761 |
-
mou2
|
762 |
-
mou3
|
763 |
-
mu2
|
764 |
-
mu3
|
765 |
-
mu4
|
766 |
-
n
|
767 |
-
n2
|
768 |
-
na1
|
769 |
-
na2
|
770 |
-
na3
|
771 |
-
na4
|
772 |
-
nai2
|
773 |
-
nai3
|
774 |
-
nai4
|
775 |
-
nan1
|
776 |
-
nan2
|
777 |
-
nan3
|
778 |
-
nan4
|
779 |
-
nang1
|
780 |
-
nang2
|
781 |
-
nang3
|
782 |
-
nao1
|
783 |
-
nao2
|
784 |
-
nao3
|
785 |
-
nao4
|
786 |
-
ne
|
787 |
-
ne2
|
788 |
-
ne4
|
789 |
-
nei3
|
790 |
-
nei4
|
791 |
-
nen4
|
792 |
-
neng2
|
793 |
-
ni1
|
794 |
-
ni2
|
795 |
-
ni3
|
796 |
-
ni4
|
797 |
-
nian1
|
798 |
-
nian2
|
799 |
-
nian3
|
800 |
-
nian4
|
801 |
-
niang2
|
802 |
-
niang4
|
803 |
-
niao2
|
804 |
-
niao3
|
805 |
-
niao4
|
806 |
-
nie1
|
807 |
-
nie4
|
808 |
-
nin2
|
809 |
-
ning2
|
810 |
-
ning3
|
811 |
-
ning4
|
812 |
-
niu1
|
813 |
-
niu2
|
814 |
-
niu3
|
815 |
-
niu4
|
816 |
-
nong2
|
817 |
-
nong4
|
818 |
-
nou4
|
819 |
-
nu2
|
820 |
-
nu3
|
821 |
-
nu4
|
822 |
-
nuan3
|
823 |
-
nuo2
|
824 |
-
nuo4
|
825 |
-
nv2
|
826 |
-
nv3
|
827 |
-
nve4
|
828 |
-
o
|
829 |
-
o1
|
830 |
-
o2
|
831 |
-
ou1
|
832 |
-
ou2
|
833 |
-
ou3
|
834 |
-
ou4
|
835 |
-
p
|
836 |
-
pa1
|
837 |
-
pa2
|
838 |
-
pa4
|
839 |
-
pai1
|
840 |
-
pai2
|
841 |
-
pai3
|
842 |
-
pai4
|
843 |
-
pan1
|
844 |
-
pan2
|
845 |
-
pan4
|
846 |
-
pang1
|
847 |
-
pang2
|
848 |
-
pang4
|
849 |
-
pao1
|
850 |
-
pao2
|
851 |
-
pao3
|
852 |
-
pao4
|
853 |
-
pei1
|
854 |
-
pei2
|
855 |
-
pei4
|
856 |
-
pen1
|
857 |
-
pen2
|
858 |
-
pen4
|
859 |
-
peng1
|
860 |
-
peng2
|
861 |
-
peng3
|
862 |
-
peng4
|
863 |
-
pi1
|
864 |
-
pi2
|
865 |
-
pi3
|
866 |
-
pi4
|
867 |
-
pian1
|
868 |
-
pian2
|
869 |
-
pian4
|
870 |
-
piao1
|
871 |
-
piao2
|
872 |
-
piao3
|
873 |
-
piao4
|
874 |
-
pie1
|
875 |
-
pie2
|
876 |
-
pie3
|
877 |
-
pin1
|
878 |
-
pin2
|
879 |
-
pin3
|
880 |
-
pin4
|
881 |
-
ping1
|
882 |
-
ping2
|
883 |
-
po1
|
884 |
-
po2
|
885 |
-
po3
|
886 |
-
po4
|
887 |
-
pou1
|
888 |
-
pu1
|
889 |
-
pu2
|
890 |
-
pu3
|
891 |
-
pu4
|
892 |
-
q
|
893 |
-
qi1
|
894 |
-
qi2
|
895 |
-
qi3
|
896 |
-
qi4
|
897 |
-
qia1
|
898 |
-
qia3
|
899 |
-
qia4
|
900 |
-
qian1
|
901 |
-
qian2
|
902 |
-
qian3
|
903 |
-
qian4
|
904 |
-
qiang1
|
905 |
-
qiang2
|
906 |
-
qiang3
|
907 |
-
qiang4
|
908 |
-
qiao1
|
909 |
-
qiao2
|
910 |
-
qiao3
|
911 |
-
qiao4
|
912 |
-
qie1
|
913 |
-
qie2
|
914 |
-
qie3
|
915 |
-
qie4
|
916 |
-
qin1
|
917 |
-
qin2
|
918 |
-
qin3
|
919 |
-
qin4
|
920 |
-
qing1
|
921 |
-
qing2
|
922 |
-
qing3
|
923 |
-
qing4
|
924 |
-
qiong1
|
925 |
-
qiong2
|
926 |
-
qiu1
|
927 |
-
qiu2
|
928 |
-
qiu3
|
929 |
-
qu1
|
930 |
-
qu2
|
931 |
-
qu3
|
932 |
-
qu4
|
933 |
-
quan1
|
934 |
-
quan2
|
935 |
-
quan3
|
936 |
-
quan4
|
937 |
-
que1
|
938 |
-
que2
|
939 |
-
que4
|
940 |
-
qun2
|
941 |
-
r
|
942 |
-
ran2
|
943 |
-
ran3
|
944 |
-
rang1
|
945 |
-
rang2
|
946 |
-
rang3
|
947 |
-
rang4
|
948 |
-
rao2
|
949 |
-
rao3
|
950 |
-
rao4
|
951 |
-
re2
|
952 |
-
re3
|
953 |
-
re4
|
954 |
-
ren2
|
955 |
-
ren3
|
956 |
-
ren4
|
957 |
-
reng1
|
958 |
-
reng2
|
959 |
-
ri4
|
960 |
-
rong1
|
961 |
-
rong2
|
962 |
-
rong3
|
963 |
-
rou2
|
964 |
-
rou4
|
965 |
-
ru2
|
966 |
-
ru3
|
967 |
-
ru4
|
968 |
-
ruan2
|
969 |
-
ruan3
|
970 |
-
rui3
|
971 |
-
rui4
|
972 |
-
run4
|
973 |
-
ruo4
|
974 |
-
s
|
975 |
-
sa1
|
976 |
-
sa2
|
977 |
-
sa3
|
978 |
-
sa4
|
979 |
-
sai1
|
980 |
-
sai4
|
981 |
-
san1
|
982 |
-
san2
|
983 |
-
san3
|
984 |
-
san4
|
985 |
-
sang1
|
986 |
-
sang3
|
987 |
-
sang4
|
988 |
-
sao1
|
989 |
-
sao2
|
990 |
-
sao3
|
991 |
-
sao4
|
992 |
-
se4
|
993 |
-
sen1
|
994 |
-
seng1
|
995 |
-
sha1
|
996 |
-
sha2
|
997 |
-
sha3
|
998 |
-
sha4
|
999 |
-
shai1
|
1000 |
-
shai2
|
1001 |
-
shai3
|
1002 |
-
shai4
|
1003 |
-
shan1
|
1004 |
-
shan3
|
1005 |
-
shan4
|
1006 |
-
shang
|
1007 |
-
shang1
|
1008 |
-
shang3
|
1009 |
-
shang4
|
1010 |
-
shao1
|
1011 |
-
shao2
|
1012 |
-
shao3
|
1013 |
-
shao4
|
1014 |
-
she1
|
1015 |
-
she2
|
1016 |
-
she3
|
1017 |
-
she4
|
1018 |
-
shei2
|
1019 |
-
shen1
|
1020 |
-
shen2
|
1021 |
-
shen3
|
1022 |
-
shen4
|
1023 |
-
sheng1
|
1024 |
-
sheng2
|
1025 |
-
sheng3
|
1026 |
-
sheng4
|
1027 |
-
shi
|
1028 |
-
shi1
|
1029 |
-
shi2
|
1030 |
-
shi3
|
1031 |
-
shi4
|
1032 |
-
shou1
|
1033 |
-
shou2
|
1034 |
-
shou3
|
1035 |
-
shou4
|
1036 |
-
shu1
|
1037 |
-
shu2
|
1038 |
-
shu3
|
1039 |
-
shu4
|
1040 |
-
shua1
|
1041 |
-
shua2
|
1042 |
-
shua3
|
1043 |
-
shua4
|
1044 |
-
shuai1
|
1045 |
-
shuai3
|
1046 |
-
shuai4
|
1047 |
-
shuan1
|
1048 |
-
shuan4
|
1049 |
-
shuang1
|
1050 |
-
shuang3
|
1051 |
-
shui2
|
1052 |
-
shui3
|
1053 |
-
shui4
|
1054 |
-
shun3
|
1055 |
-
shun4
|
1056 |
-
shuo1
|
1057 |
-
shuo4
|
1058 |
-
si1
|
1059 |
-
si2
|
1060 |
-
si3
|
1061 |
-
si4
|
1062 |
-
song1
|
1063 |
-
song3
|
1064 |
-
song4
|
1065 |
-
sou1
|
1066 |
-
sou3
|
1067 |
-
sou4
|
1068 |
-
su1
|
1069 |
-
su2
|
1070 |
-
su4
|
1071 |
-
suan1
|
1072 |
-
suan4
|
1073 |
-
sui1
|
1074 |
-
sui2
|
1075 |
-
sui3
|
1076 |
-
sui4
|
1077 |
-
sun1
|
1078 |
-
sun3
|
1079 |
-
suo
|
1080 |
-
suo1
|
1081 |
-
suo2
|
1082 |
-
suo3
|
1083 |
-
t
|
1084 |
-
ta1
|
1085 |
-
ta2
|
1086 |
-
ta3
|
1087 |
-
ta4
|
1088 |
-
tai1
|
1089 |
-
tai2
|
1090 |
-
tai4
|
1091 |
-
tan1
|
1092 |
-
tan2
|
1093 |
-
tan3
|
1094 |
-
tan4
|
1095 |
-
tang1
|
1096 |
-
tang2
|
1097 |
-
tang3
|
1098 |
-
tang4
|
1099 |
-
tao1
|
1100 |
-
tao2
|
1101 |
-
tao3
|
1102 |
-
tao4
|
1103 |
-
te4
|
1104 |
-
teng2
|
1105 |
-
ti1
|
1106 |
-
ti2
|
1107 |
-
ti3
|
1108 |
-
ti4
|
1109 |
-
tian1
|
1110 |
-
tian2
|
1111 |
-
tian3
|
1112 |
-
tiao1
|
1113 |
-
tiao2
|
1114 |
-
tiao3
|
1115 |
-
tiao4
|
1116 |
-
tie1
|
1117 |
-
tie2
|
1118 |
-
tie3
|
1119 |
-
tie4
|
1120 |
-
ting1
|
1121 |
-
ting2
|
1122 |
-
ting3
|
1123 |
-
tong1
|
1124 |
-
tong2
|
1125 |
-
tong3
|
1126 |
-
tong4
|
1127 |
-
tou
|
1128 |
-
tou1
|
1129 |
-
tou2
|
1130 |
-
tou4
|
1131 |
-
tu1
|
1132 |
-
tu2
|
1133 |
-
tu3
|
1134 |
-
tu4
|
1135 |
-
tuan1
|
1136 |
-
tuan2
|
1137 |
-
tui1
|
1138 |
-
tui2
|
1139 |
-
tui3
|
1140 |
-
tui4
|
1141 |
-
tun1
|
1142 |
-
tun2
|
1143 |
-
tun4
|
1144 |
-
tuo1
|
1145 |
-
tuo2
|
1146 |
-
tuo3
|
1147 |
-
tuo4
|
1148 |
-
u
|
1149 |
-
v
|
1150 |
-
w
|
1151 |
-
wa
|
1152 |
-
wa1
|
1153 |
-
wa2
|
1154 |
-
wa3
|
1155 |
-
wa4
|
1156 |
-
wai1
|
1157 |
-
wai3
|
1158 |
-
wai4
|
1159 |
-
wan1
|
1160 |
-
wan2
|
1161 |
-
wan3
|
1162 |
-
wan4
|
1163 |
-
wang1
|
1164 |
-
wang2
|
1165 |
-
wang3
|
1166 |
-
wang4
|
1167 |
-
wei1
|
1168 |
-
wei2
|
1169 |
-
wei3
|
1170 |
-
wei4
|
1171 |
-
wen1
|
1172 |
-
wen2
|
1173 |
-
wen3
|
1174 |
-
wen4
|
1175 |
-
weng1
|
1176 |
-
weng4
|
1177 |
-
wo1
|
1178 |
-
wo2
|
1179 |
-
wo3
|
1180 |
-
wo4
|
1181 |
-
wu1
|
1182 |
-
wu2
|
1183 |
-
wu3
|
1184 |
-
wu4
|
1185 |
-
x
|
1186 |
-
xi1
|
1187 |
-
xi2
|
1188 |
-
xi3
|
1189 |
-
xi4
|
1190 |
-
xia1
|
1191 |
-
xia2
|
1192 |
-
xia4
|
1193 |
-
xian1
|
1194 |
-
xian2
|
1195 |
-
xian3
|
1196 |
-
xian4
|
1197 |
-
xiang1
|
1198 |
-
xiang2
|
1199 |
-
xiang3
|
1200 |
-
xiang4
|
1201 |
-
xiao1
|
1202 |
-
xiao2
|
1203 |
-
xiao3
|
1204 |
-
xiao4
|
1205 |
-
xie1
|
1206 |
-
xie2
|
1207 |
-
xie3
|
1208 |
-
xie4
|
1209 |
-
xin1
|
1210 |
-
xin2
|
1211 |
-
xin4
|
1212 |
-
xing1
|
1213 |
-
xing2
|
1214 |
-
xing3
|
1215 |
-
xing4
|
1216 |
-
xiong1
|
1217 |
-
xiong2
|
1218 |
-
xiu1
|
1219 |
-
xiu3
|
1220 |
-
xiu4
|
1221 |
-
xu
|
1222 |
-
xu1
|
1223 |
-
xu2
|
1224 |
-
xu3
|
1225 |
-
xu4
|
1226 |
-
xuan1
|
1227 |
-
xuan2
|
1228 |
-
xuan3
|
1229 |
-
xuan4
|
1230 |
-
xue1
|
1231 |
-
xue2
|
1232 |
-
xue3
|
1233 |
-
xue4
|
1234 |
-
xun1
|
1235 |
-
xun2
|
1236 |
-
xun4
|
1237 |
-
y
|
1238 |
-
ya
|
1239 |
-
ya1
|
1240 |
-
ya2
|
1241 |
-
ya3
|
1242 |
-
ya4
|
1243 |
-
yan1
|
1244 |
-
yan2
|
1245 |
-
yan3
|
1246 |
-
yan4
|
1247 |
-
yang1
|
1248 |
-
yang2
|
1249 |
-
yang3
|
1250 |
-
yang4
|
1251 |
-
yao1
|
1252 |
-
yao2
|
1253 |
-
yao3
|
1254 |
-
yao4
|
1255 |
-
ye1
|
1256 |
-
ye2
|
1257 |
-
ye3
|
1258 |
-
ye4
|
1259 |
-
yi
|
1260 |
-
yi1
|
1261 |
-
yi2
|
1262 |
-
yi3
|
1263 |
-
yi4
|
1264 |
-
yin1
|
1265 |
-
yin2
|
1266 |
-
yin3
|
1267 |
-
yin4
|
1268 |
-
ying1
|
1269 |
-
ying2
|
1270 |
-
ying3
|
1271 |
-
ying4
|
1272 |
-
yo1
|
1273 |
-
yong1
|
1274 |
-
yong2
|
1275 |
-
yong3
|
1276 |
-
yong4
|
1277 |
-
you1
|
1278 |
-
you2
|
1279 |
-
you3
|
1280 |
-
you4
|
1281 |
-
yu1
|
1282 |
-
yu2
|
1283 |
-
yu3
|
1284 |
-
yu4
|
1285 |
-
yuan1
|
1286 |
-
yuan2
|
1287 |
-
yuan3
|
1288 |
-
yuan4
|
1289 |
-
yue1
|
1290 |
-
yue4
|
1291 |
-
yun1
|
1292 |
-
yun2
|
1293 |
-
yun3
|
1294 |
-
yun4
|
1295 |
-
z
|
1296 |
-
za1
|
1297 |
-
za2
|
1298 |
-
za3
|
1299 |
-
zai1
|
1300 |
-
zai3
|
1301 |
-
zai4
|
1302 |
-
zan1
|
1303 |
-
zan2
|
1304 |
-
zan3
|
1305 |
-
zan4
|
1306 |
-
zang1
|
1307 |
-
zang4
|
1308 |
-
zao1
|
1309 |
-
zao2
|
1310 |
-
zao3
|
1311 |
-
zao4
|
1312 |
-
ze2
|
1313 |
-
ze4
|
1314 |
-
zei2
|
1315 |
-
zen3
|
1316 |
-
zeng1
|
1317 |
-
zeng4
|
1318 |
-
zha1
|
1319 |
-
zha2
|
1320 |
-
zha3
|
1321 |
-
zha4
|
1322 |
-
zhai1
|
1323 |
-
zhai2
|
1324 |
-
zhai3
|
1325 |
-
zhai4
|
1326 |
-
zhan1
|
1327 |
-
zhan2
|
1328 |
-
zhan3
|
1329 |
-
zhan4
|
1330 |
-
zhang1
|
1331 |
-
zhang2
|
1332 |
-
zhang3
|
1333 |
-
zhang4
|
1334 |
-
zhao1
|
1335 |
-
zhao2
|
1336 |
-
zhao3
|
1337 |
-
zhao4
|
1338 |
-
zhe
|
1339 |
-
zhe1
|
1340 |
-
zhe2
|
1341 |
-
zhe3
|
1342 |
-
zhe4
|
1343 |
-
zhen1
|
1344 |
-
zhen2
|
1345 |
-
zhen3
|
1346 |
-
zhen4
|
1347 |
-
zheng1
|
1348 |
-
zheng2
|
1349 |
-
zheng3
|
1350 |
-
zheng4
|
1351 |
-
zhi1
|
1352 |
-
zhi2
|
1353 |
-
zhi3
|
1354 |
-
zhi4
|
1355 |
-
zhong1
|
1356 |
-
zhong2
|
1357 |
-
zhong3
|
1358 |
-
zhong4
|
1359 |
-
zhou1
|
1360 |
-
zhou2
|
1361 |
-
zhou3
|
1362 |
-
zhou4
|
1363 |
-
zhu1
|
1364 |
-
zhu2
|
1365 |
-
zhu3
|
1366 |
-
zhu4
|
1367 |
-
zhua1
|
1368 |
-
zhua2
|
1369 |
-
zhua3
|
1370 |
-
zhuai1
|
1371 |
-
zhuai3
|
1372 |
-
zhuai4
|
1373 |
-
zhuan1
|
1374 |
-
zhuan2
|
1375 |
-
zhuan3
|
1376 |
-
zhuan4
|
1377 |
-
zhuang1
|
1378 |
-
zhuang4
|
1379 |
-
zhui1
|
1380 |
-
zhui4
|
1381 |
-
zhun1
|
1382 |
-
zhun2
|
1383 |
-
zhun3
|
1384 |
-
zhuo1
|
1385 |
-
zhuo2
|
1386 |
-
zi
|
1387 |
-
zi1
|
1388 |
-
zi2
|
1389 |
-
zi3
|
1390 |
-
zi4
|
1391 |
-
zong1
|
1392 |
-
zong2
|
1393 |
-
zong3
|
1394 |
-
zong4
|
1395 |
-
zou1
|
1396 |
-
zou2
|
1397 |
-
zou3
|
1398 |
-
zou4
|
1399 |
-
zu1
|
1400 |
-
zu2
|
1401 |
-
zu3
|
1402 |
-
zuan1
|
1403 |
-
zuan3
|
1404 |
-
zuan4
|
1405 |
-
zui2
|
1406 |
-
zui3
|
1407 |
-
zui4
|
1408 |
-
zun1
|
1409 |
-
zuo
|
1410 |
-
zuo1
|
1411 |
-
zuo2
|
1412 |
-
zuo3
|
1413 |
-
zuo4
|
1414 |
-
{
|
1415 |
-
~
|
1416 |
-
¡
|
1417 |
-
¢
|
1418 |
-
£
|
1419 |
-
¥
|
1420 |
-
§
|
1421 |
-
¨
|
1422 |
-
©
|
1423 |
-
«
|
1424 |
-
®
|
1425 |
-
¯
|
1426 |
-
°
|
1427 |
-
±
|
1428 |
-
²
|
1429 |
-
³
|
1430 |
-
´
|
1431 |
-
µ
|
1432 |
-
·
|
1433 |
-
¹
|
1434 |
-
º
|
1435 |
-
»
|
1436 |
-
¼
|
1437 |
-
½
|
1438 |
-
¾
|
1439 |
-
¿
|
1440 |
-
À
|
1441 |
-
Á
|
1442 |
-
Â
|
1443 |
-
Ã
|
1444 |
-
Ä
|
1445 |
-
Å
|
1446 |
-
Æ
|
1447 |
-
Ç
|
1448 |
-
È
|
1449 |
-
É
|
1450 |
-
Ê
|
1451 |
-
Í
|
1452 |
-
Î
|
1453 |
-
Ñ
|
1454 |
-
Ó
|
1455 |
-
Ö
|
1456 |
-
×
|
1457 |
-
Ø
|
1458 |
-
Ú
|
1459 |
-
Ü
|
1460 |
-
Ý
|
1461 |
-
Þ
|
1462 |
-
ß
|
1463 |
-
à
|
1464 |
-
á
|
1465 |
-
â
|
1466 |
-
ã
|
1467 |
-
ä
|
1468 |
-
å
|
1469 |
-
æ
|
1470 |
-
ç
|
1471 |
-
è
|
1472 |
-
é
|
1473 |
-
ê
|
1474 |
-
ë
|
1475 |
-
ì
|
1476 |
-
í
|
1477 |
-
î
|
1478 |
-
ï
|
1479 |
-
ð
|
1480 |
-
ñ
|
1481 |
-
ò
|
1482 |
-
ó
|
1483 |
-
ô
|
1484 |
-
õ
|
1485 |
-
ö
|
1486 |
-
ø
|
1487 |
-
ù
|
1488 |
-
ú
|
1489 |
-
û
|
1490 |
-
ü
|
1491 |
-
ý
|
1492 |
-
Ā
|
1493 |
-
ā
|
1494 |
-
ă
|
1495 |
-
ą
|
1496 |
-
ć
|
1497 |
-
Č
|
1498 |
-
č
|
1499 |
-
Đ
|
1500 |
-
đ
|
1501 |
-
ē
|
1502 |
-
ė
|
1503 |
-
ę
|
1504 |
-
ě
|
1505 |
-
ĝ
|
1506 |
-
ğ
|
1507 |
-
ħ
|
1508 |
-
ī
|
1509 |
-
į
|
1510 |
-
İ
|
1511 |
-
ı
|
1512 |
-
Ł
|
1513 |
-
ł
|
1514 |
-
ń
|
1515 |
-
ņ
|
1516 |
-
ň
|
1517 |
-
ŋ
|
1518 |
-
Ō
|
1519 |
-
ō
|
1520 |
-
ő
|
1521 |
-
œ
|
1522 |
-
ř
|
1523 |
-
Ś
|
1524 |
-
ś
|
1525 |
-
Ş
|
1526 |
-
ş
|
1527 |
-
Š
|
1528 |
-
š
|
1529 |
-
Ť
|
1530 |
-
ť
|
1531 |
-
ũ
|
1532 |
-
ū
|
1533 |
-
ź
|
1534 |
-
Ż
|
1535 |
-
ż
|
1536 |
-
Ž
|
1537 |
-
ž
|
1538 |
-
ơ
|
1539 |
-
ư
|
1540 |
-
ǎ
|
1541 |
-
ǐ
|
1542 |
-
ǒ
|
1543 |
-
ǔ
|
1544 |
-
ǚ
|
1545 |
-
ș
|
1546 |
-
ț
|
1547 |
-
ɑ
|
1548 |
-
ɔ
|
1549 |
-
ɕ
|
1550 |
-
ə
|
1551 |
-
ɛ
|
1552 |
-
ɜ
|
1553 |
-
ɡ
|
1554 |
-
ɣ
|
1555 |
-
ɪ
|
1556 |
-
ɫ
|
1557 |
-
ɴ
|
1558 |
-
ɹ
|
1559 |
-
ɾ
|
1560 |
-
ʃ
|
1561 |
-
ʊ
|
1562 |
-
ʌ
|
1563 |
-
ʒ
|
1564 |
-
ʔ
|
1565 |
-
ʰ
|
1566 |
-
ʷ
|
1567 |
-
ʻ
|
1568 |
-
ʾ
|
1569 |
-
ʿ
|
1570 |
-
ˈ
|
1571 |
-
ː
|
1572 |
-
˙
|
1573 |
-
˜
|
1574 |
-
ˢ
|
1575 |
-
́
|
1576 |
-
̅
|
1577 |
-
Α
|
1578 |
-
Β
|
1579 |
-
Δ
|
1580 |
-
Ε
|
1581 |
-
Θ
|
1582 |
-
Κ
|
1583 |
-
Λ
|
1584 |
-
Μ
|
1585 |
-
Ξ
|
1586 |
-
Π
|
1587 |
-
Σ
|
1588 |
-
Τ
|
1589 |
-
Φ
|
1590 |
-
Χ
|
1591 |
-
Ψ
|
1592 |
-
Ω
|
1593 |
-
ά
|
1594 |
-
έ
|
1595 |
-
ή
|
1596 |
-
ί
|
1597 |
-
α
|
1598 |
-
β
|
1599 |
-
γ
|
1600 |
-
δ
|
1601 |
-
ε
|
1602 |
-
ζ
|
1603 |
-
η
|
1604 |
-
θ
|
1605 |
-
ι
|
1606 |
-
κ
|
1607 |
-
λ
|
1608 |
-
μ
|
1609 |
-
ν
|
1610 |
-
ξ
|
1611 |
-
ο
|
1612 |
-
π
|
1613 |
-
ρ
|
1614 |
-
ς
|
1615 |
-
σ
|
1616 |
-
τ
|
1617 |
-
υ
|
1618 |
-
φ
|
1619 |
-
χ
|
1620 |
-
ψ
|
1621 |
-
ω
|
1622 |
-
ϊ
|
1623 |
-
ό
|
1624 |
-
ύ
|
1625 |
-
ώ
|
1626 |
-
ϕ
|
1627 |
-
ϵ
|
1628 |
-
Ё
|
1629 |
-
А
|
1630 |
-
Б
|
1631 |
-
В
|
1632 |
-
Г
|
1633 |
-
Д
|
1634 |
-
Е
|
1635 |
-
Ж
|
1636 |
-
З
|
1637 |
-
И
|
1638 |
-
Й
|
1639 |
-
К
|
1640 |
-
Л
|
1641 |
-
М
|
1642 |
-
Н
|
1643 |
-
О
|
1644 |
-
П
|
1645 |
-
Р
|
1646 |
-
С
|
1647 |
-
Т
|
1648 |
-
У
|
1649 |
-
Ф
|
1650 |
-
Х
|
1651 |
-
Ц
|
1652 |
-
Ч
|
1653 |
-
Ш
|
1654 |
-
Щ
|
1655 |
-
Ы
|
1656 |
-
Ь
|
1657 |
-
Э
|
1658 |
-
Ю
|
1659 |
-
Я
|
1660 |
-
а
|
1661 |
-
б
|
1662 |
-
в
|
1663 |
-
г
|
1664 |
-
д
|
1665 |
-
е
|
1666 |
-
ж
|
1667 |
-
з
|
1668 |
-
и
|
1669 |
-
й
|
1670 |
-
к
|
1671 |
-
л
|
1672 |
-
м
|
1673 |
-
н
|
1674 |
-
о
|
1675 |
-
п
|
1676 |
-
р
|
1677 |
-
с
|
1678 |
-
т
|
1679 |
-
у
|
1680 |
-
ф
|
1681 |
-
х
|
1682 |
-
ц
|
1683 |
-
ч
|
1684 |
-
ш
|
1685 |
-
щ
|
1686 |
-
ъ
|
1687 |
-
ы
|
1688 |
-
ь
|
1689 |
-
э
|
1690 |
-
ю
|
1691 |
-
я
|
1692 |
-
ё
|
1693 |
-
і
|
1694 |
-
ְ
|
1695 |
-
ִ
|
1696 |
-
ֵ
|
1697 |
-
ֶ
|
1698 |
-
ַ
|
1699 |
-
ָ
|
1700 |
-
ֹ
|
1701 |
-
ּ
|
1702 |
-
־
|
1703 |
-
ׁ
|
1704 |
-
א
|
1705 |
-
ב
|
1706 |
-
ג
|
1707 |
-
ד
|
1708 |
-
ה
|
1709 |
-
ו
|
1710 |
-
ז
|
1711 |
-
ח
|
1712 |
-
ט
|
1713 |
-
י
|
1714 |
-
כ
|
1715 |
-
ל
|
1716 |
-
ם
|
1717 |
-
מ
|
1718 |
-
ן
|
1719 |
-
נ
|
1720 |
-
ס
|
1721 |
-
ע
|
1722 |
-
פ
|
1723 |
-
ק
|
1724 |
-
ר
|
1725 |
-
ש
|
1726 |
-
ת
|
1727 |
-
أ
|
1728 |
-
ب
|
1729 |
-
ة
|
1730 |
-
ت
|
1731 |
-
ج
|
1732 |
-
ح
|
1733 |
-
د
|
1734 |
-
ر
|
1735 |
-
ز
|
1736 |
-
س
|
1737 |
-
ص
|
1738 |
-
ط
|
1739 |
-
ع
|
1740 |
-
ق
|
1741 |
-
ك
|
1742 |
-
ل
|
1743 |
-
م
|
1744 |
-
ن
|
1745 |
-
ه
|
1746 |
-
و
|
1747 |
-
ي
|
1748 |
-
َ
|
1749 |
-
ُ
|
1750 |
-
ِ
|
1751 |
-
ْ
|
1752 |
-
ก
|
1753 |
-
ข
|
1754 |
-
ง
|
1755 |
-
จ
|
1756 |
-
ต
|
1757 |
-
ท
|
1758 |
-
น
|
1759 |
-
ป
|
1760 |
-
ย
|
1761 |
-
ร
|
1762 |
-
ว
|
1763 |
-
ส
|
1764 |
-
ห
|
1765 |
-
อ
|
1766 |
-
ฮ
|
1767 |
-
ั
|
1768 |
-
า
|
1769 |
-
ี
|
1770 |
-
ึ
|
1771 |
-
โ
|
1772 |
-
ใ
|
1773 |
-
ไ
|
1774 |
-
่
|
1775 |
-
้
|
1776 |
-
์
|
1777 |
-
ḍ
|
1778 |
-
Ḥ
|
1779 |
-
ḥ
|
1780 |
-
ṁ
|
1781 |
-
ṃ
|
1782 |
-
ṅ
|
1783 |
-
ṇ
|
1784 |
-
Ṛ
|
1785 |
-
ṛ
|
1786 |
-
Ṣ
|
1787 |
-
ṣ
|
1788 |
-
Ṭ
|
1789 |
-
ṭ
|
1790 |
-
ạ
|
1791 |
-
ả
|
1792 |
-
Ấ
|
1793 |
-
ấ
|
1794 |
-
ầ
|
1795 |
-
ậ
|
1796 |
-
ắ
|
1797 |
-
ằ
|
1798 |
-
ẻ
|
1799 |
-
ẽ
|
1800 |
-
ế
|
1801 |
-
ề
|
1802 |
-
ể
|
1803 |
-
ễ
|
1804 |
-
ệ
|
1805 |
-
ị
|
1806 |
-
ọ
|
1807 |
-
ỏ
|
1808 |
-
ố
|
1809 |
-
ồ
|
1810 |
-
ộ
|
1811 |
-
ớ
|
1812 |
-
ờ
|
1813 |
-
ở
|
1814 |
-
ụ
|
1815 |
-
ủ
|
1816 |
-
ứ
|
1817 |
-
ữ
|
1818 |
-
ἀ
|
1819 |
-
ἁ
|
1820 |
-
Ἀ
|
1821 |
-
ἐ
|
1822 |
-
ἔ
|
1823 |
-
ἰ
|
1824 |
-
ἱ
|
1825 |
-
ὀ
|
1826 |
-
ὁ
|
1827 |
-
ὐ
|
1828 |
-
ὲ
|
1829 |
-
ὸ
|
1830 |
-
���
|
1831 |
-
᾽
|
1832 |
-
ῆ
|
1833 |
-
ῇ
|
1834 |
-
ῶ
|
1835 |
-
|
1836 |
-
‑
|
1837 |
-
‒
|
1838 |
-
–
|
1839 |
-
—
|
1840 |
-
―
|
1841 |
-
‖
|
1842 |
-
†
|
1843 |
-
‡
|
1844 |
-
•
|
1845 |
-
…
|
1846 |
-
‧
|
1847 |
-
|
1848 |
-
′
|
1849 |
-
″
|
1850 |
-
⁄
|
1851 |
-
|
1852 |
-
⁰
|
1853 |
-
⁴
|
1854 |
-
⁵
|
1855 |
-
⁶
|
1856 |
-
⁷
|
1857 |
-
⁸
|
1858 |
-
⁹
|
1859 |
-
₁
|
1860 |
-
₂
|
1861 |
-
₃
|
1862 |
-
€
|
1863 |
-
₱
|
1864 |
-
₹
|
1865 |
-
₽
|
1866 |
-
℃
|
1867 |
-
ℏ
|
1868 |
-
ℓ
|
1869 |
-
№
|
1870 |
-
ℝ
|
1871 |
-
™
|
1872 |
-
⅓
|
1873 |
-
⅔
|
1874 |
-
⅛
|
1875 |
-
→
|
1876 |
-
∂
|
1877 |
-
∈
|
1878 |
-
∑
|
1879 |
-
−
|
1880 |
-
∗
|
1881 |
-
√
|
1882 |
-
∞
|
1883 |
-
∫
|
1884 |
-
≈
|
1885 |
-
≠
|
1886 |
-
≡
|
1887 |
-
≤
|
1888 |
-
≥
|
1889 |
-
⋅
|
1890 |
-
⋯
|
1891 |
-
█
|
1892 |
-
♪
|
1893 |
-
⟨
|
1894 |
-
⟩
|
1895 |
-
、
|
1896 |
-
。
|
1897 |
-
《
|
1898 |
-
》
|
1899 |
-
「
|
1900 |
-
」
|
1901 |
-
【
|
1902 |
-
】
|
1903 |
-
あ
|
1904 |
-
う
|
1905 |
-
え
|
1906 |
-
お
|
1907 |
-
か
|
1908 |
-
が
|
1909 |
-
き
|
1910 |
-
ぎ
|
1911 |
-
く
|
1912 |
-
ぐ
|
1913 |
-
け
|
1914 |
-
げ
|
1915 |
-
こ
|
1916 |
-
ご
|
1917 |
-
さ
|
1918 |
-
し
|
1919 |
-
じ
|
1920 |
-
す
|
1921 |
-
ず
|
1922 |
-
せ
|
1923 |
-
ぜ
|
1924 |
-
そ
|
1925 |
-
ぞ
|
1926 |
-
た
|
1927 |
-
だ
|
1928 |
-
ち
|
1929 |
-
っ
|
1930 |
-
つ
|
1931 |
-
で
|
1932 |
-
と
|
1933 |
-
ど
|
1934 |
-
な
|
1935 |
-
に
|
1936 |
-
ね
|
1937 |
-
の
|
1938 |
-
は
|
1939 |
-
ば
|
1940 |
-
ひ
|
1941 |
-
ぶ
|
1942 |
-
へ
|
1943 |
-
べ
|
1944 |
-
ま
|
1945 |
-
み
|
1946 |
-
む
|
1947 |
-
め
|
1948 |
-
も
|
1949 |
-
ゃ
|
1950 |
-
や
|
1951 |
-
ゆ
|
1952 |
-
ょ
|
1953 |
-
よ
|
1954 |
-
ら
|
1955 |
-
り
|
1956 |
-
る
|
1957 |
-
れ
|
1958 |
-
ろ
|
1959 |
-
わ
|
1960 |
-
を
|
1961 |
-
ん
|
1962 |
-
ァ
|
1963 |
-
ア
|
1964 |
-
ィ
|
1965 |
-
イ
|
1966 |
-
ウ
|
1967 |
-
ェ
|
1968 |
-
エ
|
1969 |
-
オ
|
1970 |
-
カ
|
1971 |
-
ガ
|
1972 |
-
キ
|
1973 |
-
ク
|
1974 |
-
ケ
|
1975 |
-
ゲ
|
1976 |
-
コ
|
1977 |
-
ゴ
|
1978 |
-
サ
|
1979 |
-
ザ
|
1980 |
-
シ
|
1981 |
-
ジ
|
1982 |
-
ス
|
1983 |
-
ズ
|
1984 |
-
セ
|
1985 |
-
ゾ
|
1986 |
-
タ
|
1987 |
-
ダ
|
1988 |
-
チ
|
1989 |
-
ッ
|
1990 |
-
ツ
|
1991 |
-
テ
|
1992 |
-
デ
|
1993 |
-
ト
|
1994 |
-
ド
|
1995 |
-
ナ
|
1996 |
-
ニ
|
1997 |
-
ネ
|
1998 |
-
ノ
|
1999 |
-
バ
|
2000 |
-
パ
|
2001 |
-
ビ
|
2002 |
-
ピ
|
2003 |
-
フ
|
2004 |
-
プ
|
2005 |
-
ヘ
|
2006 |
-
ベ
|
2007 |
-
ペ
|
2008 |
-
ホ
|
2009 |
-
ボ
|
2010 |
-
ポ
|
2011 |
-
マ
|
2012 |
-
ミ
|
2013 |
-
ム
|
2014 |
-
メ
|
2015 |
-
モ
|
2016 |
-
ャ
|
2017 |
-
ヤ
|
2018 |
-
ュ
|
2019 |
-
ユ
|
2020 |
-
ョ
|
2021 |
-
ヨ
|
2022 |
-
ラ
|
2023 |
-
リ
|
2024 |
-
ル
|
2025 |
-
レ
|
2026 |
-
ロ
|
2027 |
-
ワ
|
2028 |
-
ン
|
2029 |
-
・
|
2030 |
-
ー
|
2031 |
-
ㄋ
|
2032 |
-
ㄍ
|
2033 |
-
ㄎ
|
2034 |
-
ㄏ
|
2035 |
-
ㄓ
|
2036 |
-
ㄕ
|
2037 |
-
ㄚ
|
2038 |
-
ㄜ
|
2039 |
-
ㄟ
|
2040 |
-
ㄤ
|
2041 |
-
ㄥ
|
2042 |
-
ㄧ
|
2043 |
-
ㄱ
|
2044 |
-
ㄴ
|
2045 |
-
ㄷ
|
2046 |
-
ㄹ
|
2047 |
-
ㅁ
|
2048 |
-
ㅂ
|
2049 |
-
ㅅ
|
2050 |
-
ㅈ
|
2051 |
-
ㅍ
|
2052 |
-
ㅎ
|
2053 |
-
ㅏ
|
2054 |
-
ㅓ
|
2055 |
-
ㅗ
|
2056 |
-
ㅜ
|
2057 |
-
ㅡ
|
2058 |
-
ㅣ
|
2059 |
-
㗎
|
2060 |
-
가
|
2061 |
-
각
|
2062 |
-
간
|
2063 |
-
갈
|
2064 |
-
감
|
2065 |
-
갑
|
2066 |
-
갓
|
2067 |
-
갔
|
2068 |
-
강
|
2069 |
-
같
|
2070 |
-
개
|
2071 |
-
거
|
2072 |
-
건
|
2073 |
-
걸
|
2074 |
-
겁
|
2075 |
-
것
|
2076 |
-
겉
|
2077 |
-
게
|
2078 |
-
겠
|
2079 |
-
겨
|
2080 |
-
결
|
2081 |
-
겼
|
2082 |
-
경
|
2083 |
-
계
|
2084 |
-
고
|
2085 |
-
곤
|
2086 |
-
골
|
2087 |
-
곱
|
2088 |
-
공
|
2089 |
-
과
|
2090 |
-
관
|
2091 |
-
광
|
2092 |
-
교
|
2093 |
-
구
|
2094 |
-
국
|
2095 |
-
굴
|
2096 |
-
귀
|
2097 |
-
귄
|
2098 |
-
그
|
2099 |
-
근
|
2100 |
-
글
|
2101 |
-
금
|
2102 |
-
기
|
2103 |
-
긴
|
2104 |
-
길
|
2105 |
-
까
|
2106 |
-
깍
|
2107 |
-
깔
|
2108 |
-
깜
|
2109 |
-
깨
|
2110 |
-
께
|
2111 |
-
꼬
|
2112 |
-
꼭
|
2113 |
-
꽃
|
2114 |
-
꾸
|
2115 |
-
꿔
|
2116 |
-
끔
|
2117 |
-
끗
|
2118 |
-
끝
|
2119 |
-
끼
|
2120 |
-
나
|
2121 |
-
난
|
2122 |
-
날
|
2123 |
-
남
|
2124 |
-
납
|
2125 |
-
내
|
2126 |
-
냐
|
2127 |
-
냥
|
2128 |
-
너
|
2129 |
-
넘
|
2130 |
-
넣
|
2131 |
-
네
|
2132 |
-
녁
|
2133 |
-
년
|
2134 |
-
녕
|
2135 |
-
노
|
2136 |
-
녹
|
2137 |
-
놀
|
2138 |
-
누
|
2139 |
-
눈
|
2140 |
-
느
|
2141 |
-
는
|
2142 |
-
늘
|
2143 |
-
니
|
2144 |
-
님
|
2145 |
-
닙
|
2146 |
-
다
|
2147 |
-
닥
|
2148 |
-
단
|
2149 |
-
달
|
2150 |
-
닭
|
2151 |
-
당
|
2152 |
-
대
|
2153 |
-
더
|
2154 |
-
덕
|
2155 |
-
던
|
2156 |
-
덥
|
2157 |
-
데
|
2158 |
-
도
|
2159 |
-
독
|
2160 |
-
동
|
2161 |
-
돼
|
2162 |
-
됐
|
2163 |
-
되
|
2164 |
-
된
|
2165 |
-
될
|
2166 |
-
두
|
2167 |
-
둑
|
2168 |
-
둥
|
2169 |
-
드
|
2170 |
-
들
|
2171 |
-
등
|
2172 |
-
디
|
2173 |
-
따
|
2174 |
-
딱
|
2175 |
-
딸
|
2176 |
-
땅
|
2177 |
-
때
|
2178 |
-
떤
|
2179 |
-
떨
|
2180 |
-
떻
|
2181 |
-
또
|
2182 |
-
똑
|
2183 |
-
뚱
|
2184 |
-
뛰
|
2185 |
-
뜻
|
2186 |
-
띠
|
2187 |
-
라
|
2188 |
-
락
|
2189 |
-
란
|
2190 |
-
람
|
2191 |
-
랍
|
2192 |
-
랑
|
2193 |
-
래
|
2194 |
-
랜
|
2195 |
-
러
|
2196 |
-
런
|
2197 |
-
럼
|
2198 |
-
렇
|
2199 |
-
레
|
2200 |
-
려
|
2201 |
-
력
|
2202 |
-
렵
|
2203 |
-
렸
|
2204 |
-
로
|
2205 |
-
록
|
2206 |
-
롬
|
2207 |
-
루
|
2208 |
-
르
|
2209 |
-
른
|
2210 |
-
를
|
2211 |
-
름
|
2212 |
-
릉
|
2213 |
-
리
|
2214 |
-
릴
|
2215 |
-
림
|
2216 |
-
마
|
2217 |
-
막
|
2218 |
-
만
|
2219 |
-
많
|
2220 |
-
말
|
2221 |
-
맑
|
2222 |
-
맙
|
2223 |
-
맛
|
2224 |
-
매
|
2225 |
-
머
|
2226 |
-
먹
|
2227 |
-
멍
|
2228 |
-
메
|
2229 |
-
면
|
2230 |
-
명
|
2231 |
-
몇
|
2232 |
-
모
|
2233 |
-
목
|
2234 |
-
몸
|
2235 |
-
못
|
2236 |
-
무
|
2237 |
-
문
|
2238 |
-
물
|
2239 |
-
뭐
|
2240 |
-
뭘
|
2241 |
-
미
|
2242 |
-
민
|
2243 |
-
밌
|
2244 |
-
밑
|
2245 |
-
바
|
2246 |
-
박
|
2247 |
-
밖
|
2248 |
-
반
|
2249 |
-
받
|
2250 |
-
발
|
2251 |
-
밤
|
2252 |
-
밥
|
2253 |
-
방
|
2254 |
-
배
|
2255 |
-
백
|
2256 |
-
밸
|
2257 |
-
뱀
|
2258 |
-
버
|
2259 |
-
번
|
2260 |
-
벌
|
2261 |
-
벚
|
2262 |
-
베
|
2263 |
-
벼
|
2264 |
-
벽
|
2265 |
-
별
|
2266 |
-
병
|
2267 |
-
보
|
2268 |
-
복
|
2269 |
-
본
|
2270 |
-
볼
|
2271 |
-
봐
|
2272 |
-
봤
|
2273 |
-
부
|
2274 |
-
분
|
2275 |
-
불
|
2276 |
-
비
|
2277 |
-
빔
|
2278 |
-
빛
|
2279 |
-
빠
|
2280 |
-
빨
|
2281 |
-
뼈
|
2282 |
-
뽀
|
2283 |
-
뿅
|
2284 |
-
쁘
|
2285 |
-
사
|
2286 |
-
산
|
2287 |
-
살
|
2288 |
-
삼
|
2289 |
-
샀
|
2290 |
-
상
|
2291 |
-
새
|
2292 |
-
색
|
2293 |
-
생
|
2294 |
-
서
|
2295 |
-
선
|
2296 |
-
설
|
2297 |
-
섭
|
2298 |
-
섰
|
2299 |
-
성
|
2300 |
-
세
|
2301 |
-
셔
|
2302 |
-
션
|
2303 |
-
셨
|
2304 |
-
소
|
2305 |
-
속
|
2306 |
-
손
|
2307 |
-
송
|
2308 |
-
수
|
2309 |
-
숙
|
2310 |
-
순
|
2311 |
-
술
|
2312 |
-
숫
|
2313 |
-
숭
|
2314 |
-
숲
|
2315 |
-
쉬
|
2316 |
-
쉽
|
2317 |
-
스
|
2318 |
-
슨
|
2319 |
-
습
|
2320 |
-
슷
|
2321 |
-
시
|
2322 |
-
식
|
2323 |
-
신
|
2324 |
-
실
|
2325 |
-
싫
|
2326 |
-
심
|
2327 |
-
십
|
2328 |
-
싶
|
2329 |
-
싸
|
2330 |
-
써
|
2331 |
-
쓰
|
2332 |
-
쓴
|
2333 |
-
씌
|
2334 |
-
씨
|
2335 |
-
씩
|
2336 |
-
씬
|
2337 |
-
아
|
2338 |
-
악
|
2339 |
-
안
|
2340 |
-
않
|
2341 |
-
알
|
2342 |
-
야
|
2343 |
-
약
|
2344 |
-
얀
|
2345 |
-
양
|
2346 |
-
얘
|
2347 |
-
어
|
2348 |
-
언
|
2349 |
-
얼
|
2350 |
-
엄
|
2351 |
-
업
|
2352 |
-
없
|
2353 |
-
었
|
2354 |
-
엉
|
2355 |
-
에
|
2356 |
-
여
|
2357 |
-
역
|
2358 |
-
연
|
2359 |
-
염
|
2360 |
-
엽
|
2361 |
-
영
|
2362 |
-
옆
|
2363 |
-
예
|
2364 |
-
옛
|
2365 |
-
오
|
2366 |
-
온
|
2367 |
-
올
|
2368 |
-
옷
|
2369 |
-
옹
|
2370 |
-
와
|
2371 |
-
왔
|
2372 |
-
왜
|
2373 |
-
요
|
2374 |
-
욕
|
2375 |
-
용
|
2376 |
-
우
|
2377 |
-
운
|
2378 |
-
울
|
2379 |
-
웃
|
2380 |
-
워
|
2381 |
-
원
|
2382 |
-
월
|
2383 |
-
웠
|
2384 |
-
위
|
2385 |
-
윙
|
2386 |
-
유
|
2387 |
-
육
|
2388 |
-
윤
|
2389 |
-
으
|
2390 |
-
은
|
2391 |
-
을
|
2392 |
-
음
|
2393 |
-
응
|
2394 |
-
의
|
2395 |
-
이
|
2396 |
-
익
|
2397 |
-
인
|
2398 |
-
일
|
2399 |
-
읽
|
2400 |
-
임
|
2401 |
-
입
|
2402 |
-
있
|
2403 |
-
자
|
2404 |
-
작
|
2405 |
-
잔
|
2406 |
-
잖
|
2407 |
-
잘
|
2408 |
-
잡
|
2409 |
-
잤
|
2410 |
-
장
|
2411 |
-
재
|
2412 |
-
저
|
2413 |
-
전
|
2414 |
-
점
|
2415 |
-
정
|
2416 |
-
제
|
2417 |
-
져
|
2418 |
-
졌
|
2419 |
-
조
|
2420 |
-
족
|
2421 |
-
좀
|
2422 |
-
종
|
2423 |
-
좋
|
2424 |
-
죠
|
2425 |
-
주
|
2426 |
-
준
|
2427 |
-
줄
|
2428 |
-
중
|
2429 |
-
줘
|
2430 |
-
즈
|
2431 |
-
즐
|
2432 |
-
즘
|
2433 |
-
지
|
2434 |
-
진
|
2435 |
-
집
|
2436 |
-
짜
|
2437 |
-
짝
|
2438 |
-
쩌
|
2439 |
-
쪼
|
2440 |
-
쪽
|
2441 |
-
쫌
|
2442 |
-
쭈
|
2443 |
-
쯔
|
2444 |
-
찌
|
2445 |
-
찍
|
2446 |
-
차
|
2447 |
-
착
|
2448 |
-
찾
|
2449 |
-
책
|
2450 |
-
처
|
2451 |
-
천
|
2452 |
-
철
|
2453 |
-
체
|
2454 |
-
쳐
|
2455 |
-
쳤
|
2456 |
-
초
|
2457 |
-
촌
|
2458 |
-
추
|
2459 |
-
출
|
2460 |
-
춤
|
2461 |
-
춥
|
2462 |
-
춰
|
2463 |
-
치
|
2464 |
-
친
|
2465 |
-
칠
|
2466 |
-
침
|
2467 |
-
칩
|
2468 |
-
칼
|
2469 |
-
커
|
2470 |
-
켓
|
2471 |
-
코
|
2472 |
-
콩
|
2473 |
-
쿠
|
2474 |
-
퀴
|
2475 |
-
크
|
2476 |
-
큰
|
2477 |
-
큽
|
2478 |
-
키
|
2479 |
-
킨
|
2480 |
-
타
|
2481 |
-
태
|
2482 |
-
터
|
2483 |
-
턴
|
2484 |
-
털
|
2485 |
-
테
|
2486 |
-
토
|
2487 |
-
통
|
2488 |
-
투
|
2489 |
-
트
|
2490 |
-
특
|
2491 |
-
튼
|
2492 |
-
틀
|
2493 |
-
티
|
2494 |
-
팀
|
2495 |
-
파
|
2496 |
-
팔
|
2497 |
-
패
|
2498 |
-
페
|
2499 |
-
펜
|
2500 |
-
펭
|
2501 |
-
평
|
2502 |
-
포
|
2503 |
-
폭
|
2504 |
-
표
|
2505 |
-
품
|
2506 |
-
풍
|
2507 |
-
프
|
2508 |
-
플
|
2509 |
-
피
|
2510 |
-
필
|
2511 |
-
하
|
2512 |
-
학
|
2513 |
-
한
|
2514 |
-
할
|
2515 |
-
함
|
2516 |
-
합
|
2517 |
-
항
|
2518 |
-
해
|
2519 |
-
햇
|
2520 |
-
했
|
2521 |
-
행
|
2522 |
-
허
|
2523 |
-
험
|
2524 |
-
형
|
2525 |
-
혜
|
2526 |
-
호
|
2527 |
-
혼
|
2528 |
-
홀
|
2529 |
-
화
|
2530 |
-
회
|
2531 |
-
획
|
2532 |
-
후
|
2533 |
-
휴
|
2534 |
-
흐
|
2535 |
-
흔
|
2536 |
-
희
|
2537 |
-
히
|
2538 |
-
힘
|
2539 |
-
ﷺ
|
2540 |
-
ﷻ
|
2541 |
-
!
|
2542 |
-
,
|
2543 |
-
?
|
2544 |
-
�
|
2545 |
-
𠮶
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/f5_tts/data/inference-cli.toml
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
# F5-TTS | E2-TTS
|
2 |
-
model = "F5-TTS"
|
3 |
-
ref_audio = "tests/ref_audio/test_en_1_ref_short.wav"
|
4 |
-
# If an empty "", transcribes the reference audio automatically.
|
5 |
-
ref_text = "Some call me nature, others call me mother nature."
|
6 |
-
gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."
|
7 |
-
# File with text to generate. Ignores the text above.
|
8 |
-
gen_file = ""
|
9 |
-
remove_silence = false
|
10 |
-
output_dir = "tests"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/f5_tts/{scripts → eval}/eval_infer_batch.py
RENAMED
File without changes
|
src/f5_tts/{scripts → eval}/eval_infer_batch.sh
RENAMED
File without changes
|
src/f5_tts/{scripts → eval}/eval_librispeech_test_clean.py
RENAMED
File without changes
|
src/f5_tts/{scripts → eval}/eval_seedtts_testset.py
RENAMED
File without changes
|
src/f5_tts/{data → eval/eval_testset}/librispeech_pc_test_clean_cross_sentence.lst
RENAMED
File without changes
|
src/f5_tts/{inference_cli.py → infer/infer_cli.py}
RENAMED
@@ -1,7 +1,7 @@
|
|
1 |
import argparse
|
2 |
import codecs
|
3 |
-
import re
|
4 |
import os
|
|
|
5 |
from pathlib import Path
|
6 |
from importlib.resources import files
|
7 |
|
|
|
1 |
import argparse
|
2 |
import codecs
|
|
|
3 |
import os
|
4 |
+
import re
|
5 |
from pathlib import Path
|
6 |
from importlib.resources import files
|
7 |
|
src/f5_tts/{gradio_app.py → infer/infer_gradio.py}
RENAMED
File without changes
|
src/f5_tts/{speech_edit.py → infer/speech_edit.py}
RENAMED
File without changes
|
src/f5_tts/scripts/count_params_gflops.py
CHANGED
@@ -3,7 +3,7 @@ import os
|
|
3 |
|
4 |
sys.path.append(os.getcwd())
|
5 |
|
6 |
-
from f5_tts.model import
|
7 |
|
8 |
import torch
|
9 |
import thop
|
@@ -24,7 +24,7 @@ import thop
|
|
24 |
transformer = DiT(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
25 |
|
26 |
|
27 |
-
model =
|
28 |
target_sample_rate = 24000
|
29 |
n_mel_channels = 100
|
30 |
hop_length = 256
|
|
|
3 |
|
4 |
sys.path.append(os.getcwd())
|
5 |
|
6 |
+
from f5_tts.model import CFM, DiT
|
7 |
|
8 |
import torch
|
9 |
import thop
|
|
|
24 |
transformer = DiT(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
25 |
|
26 |
|
27 |
+
model = CFM(transformer=transformer)
|
28 |
target_sample_rate = 24000
|
29 |
n_mel_channels = 100
|
30 |
hop_length = 256
|
src/f5_tts/{finetune_cli.py → train/finetune_cli.py}
RENAMED
@@ -1,128 +1,128 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
import shutil
|
4 |
-
|
5 |
-
from cached_path import cached_path
|
6 |
-
from f5_tts.model import CFM, UNetT, DiT, Trainer
|
7 |
-
from f5_tts.model.utils import get_tokenizer
|
8 |
-
from f5_tts.model.dataset import load_dataset
|
9 |
-
|
10 |
-
# -------------------------- Dataset Settings --------------------------- #
|
11 |
-
target_sample_rate = 24000
|
12 |
-
n_mel_channels = 100
|
13 |
-
hop_length = 256
|
14 |
-
|
15 |
-
|
16 |
-
# -------------------------- Argument Parsing --------------------------- #
|
17 |
-
def parse_args():
|
18 |
-
parser = argparse.ArgumentParser(description="Train CFM Model")
|
19 |
-
|
20 |
-
parser.add_argument(
|
21 |
-
"--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name"
|
22 |
-
)
|
23 |
-
parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use")
|
24 |
-
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate for training")
|
25 |
-
parser.add_argument("--batch_size_per_gpu", type=int, default=256, help="Batch size per GPU")
|
26 |
-
parser.add_argument(
|
27 |
-
"--batch_size_type", type=str, default="frame", choices=["frame", "sample"], help="Batch size type"
|
28 |
-
)
|
29 |
-
parser.add_argument("--max_samples", type=int, default=16, help="Max sequences per batch")
|
30 |
-
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
31 |
-
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
|
32 |
-
parser.add_argument("--epochs", type=int, default=10, help="Number of training epochs")
|
33 |
-
parser.add_argument("--num_warmup_updates", type=int, default=5, help="Warmup steps")
|
34 |
-
parser.add_argument("--save_per_updates", type=int, default=10, help="Save checkpoint every X steps")
|
35 |
-
parser.add_argument("--last_per_steps", type=int, default=10, help="Save last checkpoint every X steps")
|
36 |
-
parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune")
|
37 |
-
|
38 |
-
parser.add_argument(
|
39 |
-
"--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type"
|
40 |
-
)
|
41 |
-
parser.add_argument(
|
42 |
-
"--tokenizer_path",
|
43 |
-
type=str,
|
44 |
-
default=None,
|
45 |
-
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
|
46 |
-
)
|
47 |
-
|
48 |
-
return parser.parse_args()
|
49 |
-
|
50 |
-
|
51 |
-
# -------------------------- Training Settings -------------------------- #
|
52 |
-
|
53 |
-
|
54 |
-
def main():
|
55 |
-
args = parse_args()
|
56 |
-
|
57 |
-
# Model parameters based on experiment name
|
58 |
-
if args.exp_name == "F5TTS_Base":
|
59 |
-
wandb_resume_id = None
|
60 |
-
model_cls = DiT
|
61 |
-
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
62 |
-
if args.finetune:
|
63 |
-
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
|
64 |
-
elif args.exp_name == "E2TTS_Base":
|
65 |
-
wandb_resume_id = None
|
66 |
-
model_cls = UNetT
|
67 |
-
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
68 |
-
if args.finetune:
|
69 |
-
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
70 |
-
|
71 |
-
if args.finetune:
|
72 |
-
path_ckpt = os.path.join("ckpts", args.dataset_name)
|
73 |
-
if not os.path.isdir(path_ckpt):
|
74 |
-
os.makedirs(path_ckpt, exist_ok=True)
|
75 |
-
shutil.copy2(ckpt_path, os.path.join(path_ckpt, os.path.basename(ckpt_path)))
|
76 |
-
|
77 |
-
checkpoint_path = os.path.join("ckpts", args.dataset_name)
|
78 |
-
|
79 |
-
# Use the tokenizer and tokenizer_path provided in the command line arguments
|
80 |
-
tokenizer = args.tokenizer
|
81 |
-
if tokenizer == "custom":
|
82 |
-
if not args.tokenizer_path:
|
83 |
-
raise ValueError("Custom tokenizer selected, but no tokenizer_path provided.")
|
84 |
-
tokenizer_path = args.tokenizer_path
|
85 |
-
else:
|
86 |
-
tokenizer_path = args.dataset_name
|
87 |
-
|
88 |
-
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
89 |
-
|
90 |
-
mel_spec_kwargs = dict(
|
91 |
-
target_sample_rate=target_sample_rate,
|
92 |
-
n_mel_channels=n_mel_channels,
|
93 |
-
hop_length=hop_length,
|
94 |
-
)
|
95 |
-
|
96 |
-
e2tts = CFM(
|
97 |
-
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
98 |
-
mel_spec_kwargs=mel_spec_kwargs,
|
99 |
-
vocab_char_map=vocab_char_map,
|
100 |
-
)
|
101 |
-
|
102 |
-
trainer = Trainer(
|
103 |
-
e2tts,
|
104 |
-
args.epochs,
|
105 |
-
args.learning_rate,
|
106 |
-
num_warmup_updates=args.num_warmup_updates,
|
107 |
-
save_per_updates=args.save_per_updates,
|
108 |
-
checkpoint_path=checkpoint_path,
|
109 |
-
batch_size=args.batch_size_per_gpu,
|
110 |
-
batch_size_type=args.batch_size_type,
|
111 |
-
max_samples=args.max_samples,
|
112 |
-
grad_accumulation_steps=args.grad_accumulation_steps,
|
113 |
-
max_grad_norm=args.max_grad_norm,
|
114 |
-
wandb_project="CFM-TTS",
|
115 |
-
wandb_run_name=args.exp_name,
|
116 |
-
wandb_resume_id=wandb_resume_id,
|
117 |
-
last_per_steps=args.last_per_steps,
|
118 |
-
)
|
119 |
-
|
120 |
-
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
121 |
-
trainer.train(
|
122 |
-
train_dataset,
|
123 |
-
resumable_with_seed=666, # seed for shuffling dataset
|
124 |
-
)
|
125 |
-
|
126 |
-
|
127 |
-
if __name__ == "__main__":
|
128 |
-
main()
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
|
5 |
+
from cached_path import cached_path
|
6 |
+
from f5_tts.model import CFM, UNetT, DiT, Trainer
|
7 |
+
from f5_tts.model.utils import get_tokenizer
|
8 |
+
from f5_tts.model.dataset import load_dataset
|
9 |
+
|
10 |
+
# -------------------------- Dataset Settings --------------------------- #
|
11 |
+
target_sample_rate = 24000
|
12 |
+
n_mel_channels = 100
|
13 |
+
hop_length = 256
|
14 |
+
|
15 |
+
|
16 |
+
# -------------------------- Argument Parsing --------------------------- #
|
17 |
+
def parse_args():
|
18 |
+
parser = argparse.ArgumentParser(description="Train CFM Model")
|
19 |
+
|
20 |
+
parser.add_argument(
|
21 |
+
"--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name"
|
22 |
+
)
|
23 |
+
parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use")
|
24 |
+
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate for training")
|
25 |
+
parser.add_argument("--batch_size_per_gpu", type=int, default=256, help="Batch size per GPU")
|
26 |
+
parser.add_argument(
|
27 |
+
"--batch_size_type", type=str, default="frame", choices=["frame", "sample"], help="Batch size type"
|
28 |
+
)
|
29 |
+
parser.add_argument("--max_samples", type=int, default=16, help="Max sequences per batch")
|
30 |
+
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
31 |
+
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
|
32 |
+
parser.add_argument("--epochs", type=int, default=10, help="Number of training epochs")
|
33 |
+
parser.add_argument("--num_warmup_updates", type=int, default=5, help="Warmup steps")
|
34 |
+
parser.add_argument("--save_per_updates", type=int, default=10, help="Save checkpoint every X steps")
|
35 |
+
parser.add_argument("--last_per_steps", type=int, default=10, help="Save last checkpoint every X steps")
|
36 |
+
parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune")
|
37 |
+
|
38 |
+
parser.add_argument(
|
39 |
+
"--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type"
|
40 |
+
)
|
41 |
+
parser.add_argument(
|
42 |
+
"--tokenizer_path",
|
43 |
+
type=str,
|
44 |
+
default=None,
|
45 |
+
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
|
46 |
+
)
|
47 |
+
|
48 |
+
return parser.parse_args()
|
49 |
+
|
50 |
+
|
51 |
+
# -------------------------- Training Settings -------------------------- #
|
52 |
+
|
53 |
+
|
54 |
+
def main():
|
55 |
+
args = parse_args()
|
56 |
+
|
57 |
+
# Model parameters based on experiment name
|
58 |
+
if args.exp_name == "F5TTS_Base":
|
59 |
+
wandb_resume_id = None
|
60 |
+
model_cls = DiT
|
61 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
62 |
+
if args.finetune:
|
63 |
+
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
|
64 |
+
elif args.exp_name == "E2TTS_Base":
|
65 |
+
wandb_resume_id = None
|
66 |
+
model_cls = UNetT
|
67 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
68 |
+
if args.finetune:
|
69 |
+
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
70 |
+
|
71 |
+
if args.finetune:
|
72 |
+
path_ckpt = os.path.join("ckpts", args.dataset_name)
|
73 |
+
if not os.path.isdir(path_ckpt):
|
74 |
+
os.makedirs(path_ckpt, exist_ok=True)
|
75 |
+
shutil.copy2(ckpt_path, os.path.join(path_ckpt, os.path.basename(ckpt_path)))
|
76 |
+
|
77 |
+
checkpoint_path = os.path.join("ckpts", args.dataset_name)
|
78 |
+
|
79 |
+
# Use the tokenizer and tokenizer_path provided in the command line arguments
|
80 |
+
tokenizer = args.tokenizer
|
81 |
+
if tokenizer == "custom":
|
82 |
+
if not args.tokenizer_path:
|
83 |
+
raise ValueError("Custom tokenizer selected, but no tokenizer_path provided.")
|
84 |
+
tokenizer_path = args.tokenizer_path
|
85 |
+
else:
|
86 |
+
tokenizer_path = args.dataset_name
|
87 |
+
|
88 |
+
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
89 |
+
|
90 |
+
mel_spec_kwargs = dict(
|
91 |
+
target_sample_rate=target_sample_rate,
|
92 |
+
n_mel_channels=n_mel_channels,
|
93 |
+
hop_length=hop_length,
|
94 |
+
)
|
95 |
+
|
96 |
+
e2tts = CFM(
|
97 |
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
98 |
+
mel_spec_kwargs=mel_spec_kwargs,
|
99 |
+
vocab_char_map=vocab_char_map,
|
100 |
+
)
|
101 |
+
|
102 |
+
trainer = Trainer(
|
103 |
+
e2tts,
|
104 |
+
args.epochs,
|
105 |
+
args.learning_rate,
|
106 |
+
num_warmup_updates=args.num_warmup_updates,
|
107 |
+
save_per_updates=args.save_per_updates,
|
108 |
+
checkpoint_path=checkpoint_path,
|
109 |
+
batch_size=args.batch_size_per_gpu,
|
110 |
+
batch_size_type=args.batch_size_type,
|
111 |
+
max_samples=args.max_samples,
|
112 |
+
grad_accumulation_steps=args.grad_accumulation_steps,
|
113 |
+
max_grad_norm=args.max_grad_norm,
|
114 |
+
wandb_project="CFM-TTS",
|
115 |
+
wandb_run_name=args.exp_name,
|
116 |
+
wandb_resume_id=wandb_resume_id,
|
117 |
+
last_per_steps=args.last_per_steps,
|
118 |
+
)
|
119 |
+
|
120 |
+
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
121 |
+
trainer.train(
|
122 |
+
train_dataset,
|
123 |
+
resumable_with_seed=666, # seed for shuffling dataset
|
124 |
+
)
|
125 |
+
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
main()
|
src/f5_tts/{finetune_gradio.py → train/finetune_gradio.py}
RENAMED
@@ -1,944 +1,944 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
import
|
8 |
-
import
|
9 |
-
import
|
10 |
-
import
|
11 |
-
import
|
12 |
-
|
13 |
-
import
|
14 |
-
|
15 |
-
|
16 |
-
import
|
17 |
-
import
|
18 |
-
|
19 |
-
import
|
20 |
-
|
21 |
-
import
|
22 |
-
import
|
23 |
-
import
|
24 |
-
import
|
25 |
-
|
26 |
-
from
|
27 |
-
from f5_tts.
|
28 |
-
|
29 |
-
|
30 |
-
training_process = None
|
31 |
-
system = platform.system()
|
32 |
-
python_executable = sys.executable or "python"
|
33 |
-
tts_api = None
|
34 |
-
last_checkpoint = ""
|
35 |
-
last_device = ""
|
36 |
-
|
37 |
-
path_data = "data"
|
38 |
-
|
39 |
-
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
40 |
-
|
41 |
-
pipe = None
|
42 |
-
|
43 |
-
|
44 |
-
# Load metadata
|
45 |
-
def get_audio_duration(audio_path):
|
46 |
-
"""Calculate the duration of an audio file."""
|
47 |
-
audio, sample_rate = torchaudio.load(audio_path)
|
48 |
-
num_channels = audio.shape[0]
|
49 |
-
return audio.shape[1] / (sample_rate * num_channels)
|
50 |
-
|
51 |
-
|
52 |
-
def clear_text(text):
|
53 |
-
"""Clean and prepare text by lowering the case and stripping whitespace."""
|
54 |
-
return text.lower().strip()
|
55 |
-
|
56 |
-
|
57 |
-
def get_rms(
|
58 |
-
y,
|
59 |
-
frame_length=2048,
|
60 |
-
hop_length=512,
|
61 |
-
pad_mode="constant",
|
62 |
-
): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
|
63 |
-
padding = (int(frame_length // 2), int(frame_length // 2))
|
64 |
-
y = np.pad(y, padding, mode=pad_mode)
|
65 |
-
|
66 |
-
axis = -1
|
67 |
-
# put our new within-frame axis at the end for now
|
68 |
-
out_strides = y.strides + tuple([y.strides[axis]])
|
69 |
-
# Reduce the shape on the framing axis
|
70 |
-
x_shape_trimmed = list(y.shape)
|
71 |
-
x_shape_trimmed[axis] -= frame_length - 1
|
72 |
-
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
|
73 |
-
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
|
74 |
-
if axis < 0:
|
75 |
-
target_axis = axis - 1
|
76 |
-
else:
|
77 |
-
target_axis = axis + 1
|
78 |
-
xw = np.moveaxis(xw, -1, target_axis)
|
79 |
-
# Downsample along the target axis
|
80 |
-
slices = [slice(None)] * xw.ndim
|
81 |
-
slices[axis] = slice(0, None, hop_length)
|
82 |
-
x = xw[tuple(slices)]
|
83 |
-
|
84 |
-
# Calculate power
|
85 |
-
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
|
86 |
-
|
87 |
-
return np.sqrt(power)
|
88 |
-
|
89 |
-
|
90 |
-
class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
|
91 |
-
def __init__(
|
92 |
-
self,
|
93 |
-
sr: int,
|
94 |
-
threshold: float = -40.0,
|
95 |
-
min_length: int = 2000,
|
96 |
-
min_interval: int = 300,
|
97 |
-
hop_size: int = 20,
|
98 |
-
max_sil_kept: int = 2000,
|
99 |
-
):
|
100 |
-
if not min_length >= min_interval >= hop_size:
|
101 |
-
raise ValueError("The following condition must be satisfied: min_length >= min_interval >= hop_size")
|
102 |
-
if not max_sil_kept >= hop_size:
|
103 |
-
raise ValueError("The following condition must be satisfied: max_sil_kept >= hop_size")
|
104 |
-
min_interval = sr * min_interval / 1000
|
105 |
-
self.threshold = 10 ** (threshold / 20.0)
|
106 |
-
self.hop_size = round(sr * hop_size / 1000)
|
107 |
-
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
108 |
-
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
109 |
-
self.min_interval = round(min_interval / self.hop_size)
|
110 |
-
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
111 |
-
|
112 |
-
def _apply_slice(self, waveform, begin, end):
|
113 |
-
if len(waveform.shape) > 1:
|
114 |
-
return waveform[:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)]
|
115 |
-
else:
|
116 |
-
return waveform[begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)]
|
117 |
-
|
118 |
-
# @timeit
|
119 |
-
def slice(self, waveform):
|
120 |
-
if len(waveform.shape) > 1:
|
121 |
-
samples = waveform.mean(axis=0)
|
122 |
-
else:
|
123 |
-
samples = waveform
|
124 |
-
if samples.shape[0] <= self.min_length:
|
125 |
-
return [waveform]
|
126 |
-
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
|
127 |
-
sil_tags = []
|
128 |
-
silence_start = None
|
129 |
-
clip_start = 0
|
130 |
-
for i, rms in enumerate(rms_list):
|
131 |
-
# Keep looping while frame is silent.
|
132 |
-
if rms < self.threshold:
|
133 |
-
# Record start of silent frames.
|
134 |
-
if silence_start is None:
|
135 |
-
silence_start = i
|
136 |
-
continue
|
137 |
-
# Keep looping while frame is not silent and silence start has not been recorded.
|
138 |
-
if silence_start is None:
|
139 |
-
continue
|
140 |
-
# Clear recorded silence start if interval is not enough or clip is too short
|
141 |
-
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
142 |
-
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
|
143 |
-
if not is_leading_silence and not need_slice_middle:
|
144 |
-
silence_start = None
|
145 |
-
continue
|
146 |
-
# Need slicing. Record the range of silent frames to be removed.
|
147 |
-
if i - silence_start <= self.max_sil_kept:
|
148 |
-
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
149 |
-
if silence_start == 0:
|
150 |
-
sil_tags.append((0, pos))
|
151 |
-
else:
|
152 |
-
sil_tags.append((pos, pos))
|
153 |
-
clip_start = pos
|
154 |
-
elif i - silence_start <= self.max_sil_kept * 2:
|
155 |
-
pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
|
156 |
-
pos += i - self.max_sil_kept
|
157 |
-
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
158 |
-
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
|
159 |
-
if silence_start == 0:
|
160 |
-
sil_tags.append((0, pos_r))
|
161 |
-
clip_start = pos_r
|
162 |
-
else:
|
163 |
-
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
164 |
-
clip_start = max(pos_r, pos)
|
165 |
-
else:
|
166 |
-
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
167 |
-
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
|
168 |
-
if silence_start == 0:
|
169 |
-
sil_tags.append((0, pos_r))
|
170 |
-
else:
|
171 |
-
sil_tags.append((pos_l, pos_r))
|
172 |
-
clip_start = pos_r
|
173 |
-
silence_start = None
|
174 |
-
# Deal with trailing silence.
|
175 |
-
total_frames = rms_list.shape[0]
|
176 |
-
if silence_start is not None and total_frames - silence_start >= self.min_interval:
|
177 |
-
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
178 |
-
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
|
179 |
-
sil_tags.append((pos, total_frames + 1))
|
180 |
-
# Apply and return slices.
|
181 |
-
####音频+起始时间+终止时间
|
182 |
-
if len(sil_tags) == 0:
|
183 |
-
return [[waveform, 0, int(total_frames * self.hop_size)]]
|
184 |
-
else:
|
185 |
-
chunks = []
|
186 |
-
if sil_tags[0][0] > 0:
|
187 |
-
chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]), 0, int(sil_tags[0][0] * self.hop_size)])
|
188 |
-
for i in range(len(sil_tags) - 1):
|
189 |
-
chunks.append(
|
190 |
-
[
|
191 |
-
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),
|
192 |
-
int(sil_tags[i][1] * self.hop_size),
|
193 |
-
int(sil_tags[i + 1][0] * self.hop_size),
|
194 |
-
]
|
195 |
-
)
|
196 |
-
if sil_tags[-1][1] < total_frames:
|
197 |
-
chunks.append(
|
198 |
-
[
|
199 |
-
self._apply_slice(waveform, sil_tags[-1][1], total_frames),
|
200 |
-
int(sil_tags[-1][1] * self.hop_size),
|
201 |
-
int(total_frames * self.hop_size),
|
202 |
-
]
|
203 |
-
)
|
204 |
-
return chunks
|
205 |
-
|
206 |
-
|
207 |
-
# terminal
|
208 |
-
def terminate_process_tree(pid, including_parent=True):
|
209 |
-
try:
|
210 |
-
parent = psutil.Process(pid)
|
211 |
-
except psutil.NoSuchProcess:
|
212 |
-
# Process already terminated
|
213 |
-
return
|
214 |
-
|
215 |
-
children = parent.children(recursive=True)
|
216 |
-
for child in children:
|
217 |
-
try:
|
218 |
-
os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
|
219 |
-
except OSError:
|
220 |
-
pass
|
221 |
-
if including_parent:
|
222 |
-
try:
|
223 |
-
os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
|
224 |
-
except OSError:
|
225 |
-
pass
|
226 |
-
|
227 |
-
|
228 |
-
def terminate_process(pid):
|
229 |
-
if system == "Windows":
|
230 |
-
cmd = f"taskkill /t /f /pid {pid}"
|
231 |
-
os.system(cmd)
|
232 |
-
else:
|
233 |
-
terminate_process_tree(pid)
|
234 |
-
|
235 |
-
|
236 |
-
def start_training(
|
237 |
-
dataset_name="",
|
238 |
-
exp_name="F5TTS_Base",
|
239 |
-
learning_rate=1e-4,
|
240 |
-
batch_size_per_gpu=400,
|
241 |
-
batch_size_type="frame",
|
242 |
-
max_samples=64,
|
243 |
-
grad_accumulation_steps=1,
|
244 |
-
max_grad_norm=1.0,
|
245 |
-
epochs=11,
|
246 |
-
num_warmup_updates=200,
|
247 |
-
save_per_updates=400,
|
248 |
-
last_per_steps=800,
|
249 |
-
finetune=True,
|
250 |
-
):
|
251 |
-
global training_process, tts_api
|
252 |
-
|
253 |
-
if tts_api is not None:
|
254 |
-
del tts_api
|
255 |
-
gc.collect()
|
256 |
-
torch.cuda.empty_cache()
|
257 |
-
tts_api = None
|
258 |
-
|
259 |
-
path_project = os.path.join(path_data, dataset_name + "_pinyin")
|
260 |
-
|
261 |
-
if not os.path.isdir(path_project):
|
262 |
-
yield (
|
263 |
-
f"There is not project with name {dataset_name}",
|
264 |
-
gr.update(interactive=True),
|
265 |
-
gr.update(interactive=False),
|
266 |
-
)
|
267 |
-
return
|
268 |
-
|
269 |
-
file_raw = os.path.join(path_project, "raw.arrow")
|
270 |
-
if not os.path.isfile(file_raw):
|
271 |
-
yield f"There is no file {file_raw}", gr.update(interactive=True), gr.update(interactive=False)
|
272 |
-
return
|
273 |
-
|
274 |
-
# Check if a training process is already running
|
275 |
-
if training_process is not None:
|
276 |
-
return "Train run already!", gr.update(interactive=False), gr.update(interactive=True)
|
277 |
-
|
278 |
-
yield "start train", gr.update(interactive=False), gr.update(interactive=False)
|
279 |
-
|
280 |
-
# Command to run the training script with the specified arguments
|
281 |
-
cmd = (
|
282 |
-
f"accelerate launch finetune-cli.py --exp_name {exp_name} "
|
283 |
-
f"--learning_rate {learning_rate} "
|
284 |
-
f"--batch_size_per_gpu {batch_size_per_gpu} "
|
285 |
-
f"--batch_size_type {batch_size_type} "
|
286 |
-
f"--max_samples {max_samples} "
|
287 |
-
f"--grad_accumulation_steps {grad_accumulation_steps} "
|
288 |
-
f"--max_grad_norm {max_grad_norm} "
|
289 |
-
f"--epochs {epochs} "
|
290 |
-
f"--num_warmup_updates {num_warmup_updates} "
|
291 |
-
f"--save_per_updates {save_per_updates} "
|
292 |
-
f"--last_per_steps {last_per_steps} "
|
293 |
-
f"--dataset_name {dataset_name}"
|
294 |
-
)
|
295 |
-
if finetune:
|
296 |
-
cmd += f" --finetune {finetune}"
|
297 |
-
|
298 |
-
print(cmd)
|
299 |
-
|
300 |
-
try:
|
301 |
-
# Start the training process
|
302 |
-
training_process = subprocess.Popen(cmd, shell=True)
|
303 |
-
|
304 |
-
time.sleep(5)
|
305 |
-
yield "train start", gr.update(interactive=False), gr.update(interactive=True)
|
306 |
-
|
307 |
-
# Wait for the training process to finish
|
308 |
-
training_process.wait()
|
309 |
-
time.sleep(1)
|
310 |
-
|
311 |
-
if training_process is None:
|
312 |
-
text_info = "train stop"
|
313 |
-
else:
|
314 |
-
text_info = "train complete !"
|
315 |
-
|
316 |
-
except Exception as e: # Catch all exceptions
|
317 |
-
# Ensure that we reset the training process variable in case of an error
|
318 |
-
text_info = f"An error occurred: {str(e)}"
|
319 |
-
|
320 |
-
training_process = None
|
321 |
-
|
322 |
-
yield text_info, gr.update(interactive=True), gr.update(interactive=False)
|
323 |
-
|
324 |
-
|
325 |
-
def stop_training():
|
326 |
-
global training_process
|
327 |
-
if training_process is None:
|
328 |
-
return "Train not run !", gr.update(interactive=True), gr.update(interactive=False)
|
329 |
-
terminate_process_tree(training_process.pid)
|
330 |
-
training_process = None
|
331 |
-
return "train stop", gr.update(interactive=True), gr.update(interactive=False)
|
332 |
-
|
333 |
-
|
334 |
-
def create_data_project(name):
|
335 |
-
name += "_pinyin"
|
336 |
-
os.makedirs(os.path.join(path_data, name), exist_ok=True)
|
337 |
-
os.makedirs(os.path.join(path_data, name, "dataset"), exist_ok=True)
|
338 |
-
|
339 |
-
|
340 |
-
def transcribe(file_audio, language="english"):
|
341 |
-
global pipe
|
342 |
-
|
343 |
-
if pipe is None:
|
344 |
-
pipe = pipeline(
|
345 |
-
"automatic-speech-recognition",
|
346 |
-
model="openai/whisper-large-v3-turbo",
|
347 |
-
torch_dtype=torch.float16,
|
348 |
-
device=device,
|
349 |
-
)
|
350 |
-
|
351 |
-
text_transcribe = pipe(
|
352 |
-
file_audio,
|
353 |
-
chunk_length_s=30,
|
354 |
-
batch_size=128,
|
355 |
-
generate_kwargs={"task": "transcribe", "language": language},
|
356 |
-
return_timestamps=False,
|
357 |
-
)["text"].strip()
|
358 |
-
return text_transcribe
|
359 |
-
|
360 |
-
|
361 |
-
def transcribe_all(name_project, audio_files, language, user=False, progress=gr.Progress()):
|
362 |
-
name_project += "_pinyin"
|
363 |
-
path_project = os.path.join(path_data, name_project)
|
364 |
-
path_dataset = os.path.join(path_project, "dataset")
|
365 |
-
path_project_wavs = os.path.join(path_project, "wavs")
|
366 |
-
file_metadata = os.path.join(path_project, "metadata.csv")
|
367 |
-
|
368 |
-
if audio_files is None:
|
369 |
-
return "You need to load an audio file."
|
370 |
-
|
371 |
-
if os.path.isdir(path_project_wavs):
|
372 |
-
shutil.rmtree(path_project_wavs)
|
373 |
-
|
374 |
-
if os.path.isfile(file_metadata):
|
375 |
-
os.remove(file_metadata)
|
376 |
-
|
377 |
-
os.makedirs(path_project_wavs, exist_ok=True)
|
378 |
-
|
379 |
-
if user:
|
380 |
-
file_audios = [
|
381 |
-
file
|
382 |
-
for format in ("*.wav", "*.ogg", "*.opus", "*.mp3", "*.flac")
|
383 |
-
for file in glob(os.path.join(path_dataset, format))
|
384 |
-
]
|
385 |
-
if file_audios == []:
|
386 |
-
return "No audio file was found in the dataset."
|
387 |
-
else:
|
388 |
-
file_audios = audio_files
|
389 |
-
|
390 |
-
alpha = 0.5
|
391 |
-
_max = 1.0
|
392 |
-
slicer = Slicer(24000)
|
393 |
-
|
394 |
-
num = 0
|
395 |
-
error_num = 0
|
396 |
-
data = ""
|
397 |
-
for file_audio in progress.tqdm(file_audios, desc="transcribe files", total=len((file_audios))):
|
398 |
-
audio, _ = librosa.load(file_audio, sr=24000, mono=True)
|
399 |
-
|
400 |
-
list_slicer = slicer.slice(audio)
|
401 |
-
for chunk, start, end in progress.tqdm(list_slicer, total=len(list_slicer), desc="slicer files"):
|
402 |
-
name_segment = os.path.join(f"segment_{num}")
|
403 |
-
file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav")
|
404 |
-
|
405 |
-
tmp_max = np.abs(chunk).max()
|
406 |
-
if tmp_max > 1:
|
407 |
-
chunk /= tmp_max
|
408 |
-
chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
|
409 |
-
wavfile.write(file_segment, 24000, (chunk * 32767).astype(np.int16))
|
410 |
-
|
411 |
-
try:
|
412 |
-
text = transcribe(file_segment, language)
|
413 |
-
text = text.lower().strip().replace('"', "")
|
414 |
-
|
415 |
-
data += f"{name_segment}|{text}\n"
|
416 |
-
|
417 |
-
num += 1
|
418 |
-
except: # noqa: E722
|
419 |
-
error_num += 1
|
420 |
-
|
421 |
-
with open(file_metadata, "w", encoding="utf-8") as f:
|
422 |
-
f.write(data)
|
423 |
-
|
424 |
-
if error_num != []:
|
425 |
-
error_text = f"\nerror files : {error_num}"
|
426 |
-
else:
|
427 |
-
error_text = ""
|
428 |
-
|
429 |
-
return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}"
|
430 |
-
|
431 |
-
|
432 |
-
def format_seconds_to_hms(seconds):
|
433 |
-
hours = int(seconds / 3600)
|
434 |
-
minutes = int((seconds % 3600) / 60)
|
435 |
-
seconds = seconds % 60
|
436 |
-
return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds))
|
437 |
-
|
438 |
-
|
439 |
-
def create_metadata(name_project, progress=gr.Progress()):
|
440 |
-
name_project += "_pinyin"
|
441 |
-
path_project = os.path.join(path_data, name_project)
|
442 |
-
path_project_wavs = os.path.join(path_project, "wavs")
|
443 |
-
file_metadata = os.path.join(path_project, "metadata.csv")
|
444 |
-
file_raw = os.path.join(path_project, "raw.arrow")
|
445 |
-
file_duration = os.path.join(path_project, "duration.json")
|
446 |
-
file_vocab = os.path.join(path_project, "vocab.txt")
|
447 |
-
|
448 |
-
if not os.path.isfile(file_metadata):
|
449 |
-
return "The file was not found in " + file_metadata
|
450 |
-
|
451 |
-
with open(file_metadata, "r", encoding="utf-8") as f:
|
452 |
-
data = f.read()
|
453 |
-
|
454 |
-
audio_path_list = []
|
455 |
-
text_list = []
|
456 |
-
duration_list = []
|
457 |
-
|
458 |
-
count = data.split("\n")
|
459 |
-
lenght = 0
|
460 |
-
result = []
|
461 |
-
error_files = []
|
462 |
-
for line in progress.tqdm(data.split("\n"), total=count):
|
463 |
-
sp_line = line.split("|")
|
464 |
-
if len(sp_line) != 2:
|
465 |
-
continue
|
466 |
-
name_audio, text = sp_line[:2]
|
467 |
-
|
468 |
-
file_audio = os.path.join(path_project_wavs, name_audio + ".wav")
|
469 |
-
|
470 |
-
if not os.path.isfile(file_audio):
|
471 |
-
error_files.append(file_audio)
|
472 |
-
continue
|
473 |
-
|
474 |
-
duraction = get_audio_duration(file_audio)
|
475 |
-
if duraction < 2 and duraction > 15:
|
476 |
-
continue
|
477 |
-
if len(text) < 4:
|
478 |
-
continue
|
479 |
-
|
480 |
-
text = clear_text(text)
|
481 |
-
text = convert_char_to_pinyin([text], polyphone=True)[0]
|
482 |
-
|
483 |
-
audio_path_list.append(file_audio)
|
484 |
-
duration_list.append(duraction)
|
485 |
-
text_list.append(text)
|
486 |
-
|
487 |
-
result.append({"audio_path": file_audio, "text": text, "duration": duraction})
|
488 |
-
|
489 |
-
lenght += duraction
|
490 |
-
|
491 |
-
if duration_list == []:
|
492 |
-
error_files_text = "\n".join(error_files)
|
493 |
-
return f"Error: No audio files found in the specified path : \n{error_files_text}"
|
494 |
-
|
495 |
-
min_second = round(min(duration_list), 2)
|
496 |
-
max_second = round(max(duration_list), 2)
|
497 |
-
|
498 |
-
with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
|
499 |
-
for line in progress.tqdm(result, total=len(result), desc="prepare data"):
|
500 |
-
writer.write(line)
|
501 |
-
|
502 |
-
with open(file_duration, "w", encoding="utf-8") as f:
|
503 |
-
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
504 |
-
|
505 |
-
file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt"
|
506 |
-
if not os.path.isfile(file_vocab_finetune):
|
507 |
-
return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!"
|
508 |
-
shutil.copy2(file_vocab_finetune, file_vocab)
|
509 |
-
|
510 |
-
if error_files != []:
|
511 |
-
error_text = "error files\n" + "\n".join(error_files)
|
512 |
-
else:
|
513 |
-
error_text = ""
|
514 |
-
|
515 |
-
return f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\n{error_text}"
|
516 |
-
|
517 |
-
|
518 |
-
def check_user(value):
|
519 |
-
return gr.update(visible=not value), gr.update(visible=value)
|
520 |
-
|
521 |
-
|
522 |
-
def calculate_train(
|
523 |
-
name_project,
|
524 |
-
batch_size_type,
|
525 |
-
max_samples,
|
526 |
-
learning_rate,
|
527 |
-
num_warmup_updates,
|
528 |
-
save_per_updates,
|
529 |
-
last_per_steps,
|
530 |
-
finetune,
|
531 |
-
):
|
532 |
-
name_project += "_pinyin"
|
533 |
-
path_project = os.path.join(path_data, name_project)
|
534 |
-
file_duraction = os.path.join(path_project, "duration.json")
|
535 |
-
|
536 |
-
if not os.path.isfile(file_duraction):
|
537 |
-
return (
|
538 |
-
1000,
|
539 |
-
max_samples,
|
540 |
-
num_warmup_updates,
|
541 |
-
save_per_updates,
|
542 |
-
last_per_steps,
|
543 |
-
"project not found !",
|
544 |
-
learning_rate,
|
545 |
-
)
|
546 |
-
|
547 |
-
with open(file_duraction, "r") as file:
|
548 |
-
data = json.load(file)
|
549 |
-
|
550 |
-
duration_list = data["duration"]
|
551 |
-
|
552 |
-
samples = len(duration_list)
|
553 |
-
|
554 |
-
if torch.cuda.is_available():
|
555 |
-
gpu_properties = torch.cuda.get_device_properties(0)
|
556 |
-
total_memory = gpu_properties.total_memory / (1024**3)
|
557 |
-
elif torch.backends.mps.is_available():
|
558 |
-
total_memory = psutil.virtual_memory().available / (1024**3)
|
559 |
-
|
560 |
-
if batch_size_type == "frame":
|
561 |
-
batch = int(total_memory * 0.5)
|
562 |
-
batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch)
|
563 |
-
batch_size_per_gpu = int(38400 / batch)
|
564 |
-
else:
|
565 |
-
batch_size_per_gpu = int(total_memory / 8)
|
566 |
-
batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu)
|
567 |
-
batch = batch_size_per_gpu
|
568 |
-
|
569 |
-
if batch_size_per_gpu <= 0:
|
570 |
-
batch_size_per_gpu = 1
|
571 |
-
|
572 |
-
if samples < 64:
|
573 |
-
max_samples = int(samples * 0.25)
|
574 |
-
else:
|
575 |
-
max_samples = 64
|
576 |
-
|
577 |
-
num_warmup_updates = int(samples * 0.05)
|
578 |
-
save_per_updates = int(samples * 0.10)
|
579 |
-
last_per_steps = int(save_per_updates * 5)
|
580 |
-
|
581 |
-
max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples)
|
582 |
-
num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates)
|
583 |
-
save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates)
|
584 |
-
last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps)
|
585 |
-
|
586 |
-
if finetune:
|
587 |
-
learning_rate = 1e-5
|
588 |
-
else:
|
589 |
-
learning_rate = 7.5e-5
|
590 |
-
|
591 |
-
return batch_size_per_gpu, max_samples, num_warmup_updates, save_per_updates, last_per_steps, samples, learning_rate
|
592 |
-
|
593 |
-
|
594 |
-
def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str) -> None:
|
595 |
-
try:
|
596 |
-
checkpoint = torch.load(checkpoint_path)
|
597 |
-
print("Original Checkpoint Keys:", checkpoint.keys())
|
598 |
-
|
599 |
-
ema_model_state_dict = checkpoint.get("ema_model_state_dict", None)
|
600 |
-
|
601 |
-
if ema_model_state_dict is not None:
|
602 |
-
new_checkpoint = {"ema_model_state_dict": ema_model_state_dict}
|
603 |
-
torch.save(new_checkpoint, new_checkpoint_path)
|
604 |
-
return f"New checkpoint saved at: {new_checkpoint_path}"
|
605 |
-
else:
|
606 |
-
return "No 'ema_model_state_dict' found in the checkpoint."
|
607 |
-
|
608 |
-
except Exception as e:
|
609 |
-
return f"An error occurred: {e}"
|
610 |
-
|
611 |
-
|
612 |
-
def vocab_check(project_name):
|
613 |
-
name_project = project_name + "_pinyin"
|
614 |
-
path_project = os.path.join(path_data, name_project)
|
615 |
-
|
616 |
-
file_metadata = os.path.join(path_project, "metadata.csv")
|
617 |
-
|
618 |
-
file_vocab = "data/Emilia_ZH_EN_pinyin/vocab.txt"
|
619 |
-
if not os.path.isfile(file_vocab):
|
620 |
-
return f"the file {file_vocab} not found !"
|
621 |
-
|
622 |
-
with open(file_vocab, "r", encoding="utf-8") as f:
|
623 |
-
data = f.read()
|
624 |
-
|
625 |
-
vocab = data.split("\n")
|
626 |
-
|
627 |
-
if not os.path.isfile(file_metadata):
|
628 |
-
return f"the file {file_metadata} not found !"
|
629 |
-
|
630 |
-
with open(file_metadata, "r", encoding="utf-8") as f:
|
631 |
-
data = f.read()
|
632 |
-
|
633 |
-
miss_symbols = []
|
634 |
-
miss_symbols_keep = {}
|
635 |
-
for item in data.split("\n"):
|
636 |
-
sp = item.split("|")
|
637 |
-
if len(sp) != 2:
|
638 |
-
continue
|
639 |
-
|
640 |
-
text = sp[1].lower().strip()
|
641 |
-
|
642 |
-
for t in text:
|
643 |
-
if t not in vocab and t not in miss_symbols_keep:
|
644 |
-
miss_symbols.append(t)
|
645 |
-
miss_symbols_keep[t] = t
|
646 |
-
if miss_symbols == []:
|
647 |
-
info = "You can train using your language !"
|
648 |
-
else:
|
649 |
-
info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols)
|
650 |
-
|
651 |
-
return info
|
652 |
-
|
653 |
-
|
654 |
-
def get_random_sample_prepare(project_name):
|
655 |
-
name_project = project_name + "_pinyin"
|
656 |
-
path_project = os.path.join(path_data, name_project)
|
657 |
-
file_arrow = os.path.join(path_project, "raw.arrow")
|
658 |
-
if not os.path.isfile(file_arrow):
|
659 |
-
return "", None
|
660 |
-
dataset = Dataset_.from_file(file_arrow)
|
661 |
-
random_sample = dataset.shuffle(seed=random.randint(0, 1000)).select([0])
|
662 |
-
text = "[" + " , ".join(["' " + t + " '" for t in random_sample["text"][0]]) + "]"
|
663 |
-
audio_path = random_sample["audio_path"][0]
|
664 |
-
return text, audio_path
|
665 |
-
|
666 |
-
|
667 |
-
def get_random_sample_transcribe(project_name):
|
668 |
-
name_project = project_name + "_pinyin"
|
669 |
-
path_project = os.path.join(path_data, name_project)
|
670 |
-
file_metadata = os.path.join(path_project, "metadata.csv")
|
671 |
-
if not os.path.isfile(file_metadata):
|
672 |
-
return "", None
|
673 |
-
|
674 |
-
data = ""
|
675 |
-
with open(file_metadata, "r", encoding="utf-8") as f:
|
676 |
-
data = f.read()
|
677 |
-
|
678 |
-
list_data = []
|
679 |
-
for item in data.split("\n"):
|
680 |
-
sp = item.split("|")
|
681 |
-
if len(sp) != 2:
|
682 |
-
continue
|
683 |
-
list_data.append([os.path.join(path_project, "wavs", sp[0] + ".wav"), sp[1]])
|
684 |
-
|
685 |
-
if list_data == []:
|
686 |
-
return "", None
|
687 |
-
|
688 |
-
random_item = random.choice(list_data)
|
689 |
-
|
690 |
-
return random_item[1], random_item[0]
|
691 |
-
|
692 |
-
|
693 |
-
def get_random_sample_infer(project_name):
|
694 |
-
text, audio = get_random_sample_transcribe(project_name)
|
695 |
-
return (
|
696 |
-
text,
|
697 |
-
text,
|
698 |
-
audio,
|
699 |
-
)
|
700 |
-
|
701 |
-
|
702 |
-
def infer(file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step):
|
703 |
-
global last_checkpoint, last_device, tts_api
|
704 |
-
|
705 |
-
if not os.path.isfile(file_checkpoint):
|
706 |
-
return None
|
707 |
-
|
708 |
-
if training_process is not None:
|
709 |
-
device_test = "cpu"
|
710 |
-
else:
|
711 |
-
device_test = None
|
712 |
-
|
713 |
-
if last_checkpoint != file_checkpoint or last_device != device_test:
|
714 |
-
if last_checkpoint != file_checkpoint:
|
715 |
-
last_checkpoint = file_checkpoint
|
716 |
-
if last_device != device_test:
|
717 |
-
last_device = device_test
|
718 |
-
|
719 |
-
tts_api = F5TTS(model_type=exp_name, ckpt_file=file_checkpoint, device=device_test)
|
720 |
-
|
721 |
-
print("update", device_test, file_checkpoint)
|
722 |
-
|
723 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
724 |
-
tts_api.infer(gen_text=gen_text, ref_text=ref_text, ref_file=ref_audio, nfe_step=nfe_step, file_wave=f.name)
|
725 |
-
return f.name
|
726 |
-
|
727 |
-
|
728 |
-
with gr.Blocks() as app:
|
729 |
-
with gr.Row():
|
730 |
-
project_name = gr.Textbox(label="project name", value="my_speak")
|
731 |
-
bt_create = gr.Button("create new project")
|
732 |
-
|
733 |
-
bt_create.click(fn=create_data_project, inputs=[project_name])
|
734 |
-
|
735 |
-
with gr.Tabs():
|
736 |
-
with gr.TabItem("transcribe Data"):
|
737 |
-
ch_manual = gr.Checkbox(label="user", value=False)
|
738 |
-
|
739 |
-
mark_info_transcribe = gr.Markdown(
|
740 |
-
"""```plaintext
|
741 |
-
Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory.
|
742 |
-
|
743 |
-
my_speak/
|
744 |
-
│
|
745 |
-
└── dataset/
|
746 |
-
├── audio1.wav
|
747 |
-
└── audio2.wav
|
748 |
-
...
|
749 |
-
```""",
|
750 |
-
visible=False,
|
751 |
-
)
|
752 |
-
|
753 |
-
audio_speaker = gr.File(label="voice", type="filepath", file_count="multiple")
|
754 |
-
txt_lang = gr.Text(label="Language", value="english")
|
755 |
-
bt_transcribe = bt_create = gr.Button("transcribe")
|
756 |
-
txt_info_transcribe = gr.Text(label="info", value="")
|
757 |
-
bt_transcribe.click(
|
758 |
-
fn=transcribe_all,
|
759 |
-
inputs=[project_name, audio_speaker, txt_lang, ch_manual],
|
760 |
-
outputs=[txt_info_transcribe],
|
761 |
-
)
|
762 |
-
ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe])
|
763 |
-
|
764 |
-
random_sample_transcribe = gr.Button("random sample")
|
765 |
-
|
766 |
-
with gr.Row():
|
767 |
-
random_text_transcribe = gr.Text(label="Text")
|
768 |
-
random_audio_transcribe = gr.Audio(label="Audio", type="filepath")
|
769 |
-
|
770 |
-
random_sample_transcribe.click(
|
771 |
-
fn=get_random_sample_transcribe,
|
772 |
-
inputs=[project_name],
|
773 |
-
outputs=[random_text_transcribe, random_audio_transcribe],
|
774 |
-
)
|
775 |
-
|
776 |
-
with gr.TabItem("prepare Data"):
|
777 |
-
gr.Markdown(
|
778 |
-
"""```plaintext
|
779 |
-
place all your wavs folder and your metadata.csv file in {your name project}
|
780 |
-
my_speak/
|
781 |
-
│
|
782 |
-
├── wavs/
|
783 |
-
│ ├── audio1.wav
|
784 |
-
│ └── audio2.wav
|
785 |
-
| ...
|
786 |
-
│
|
787 |
-
└── metadata.csv
|
788 |
-
|
789 |
-
file format metadata.csv
|
790 |
-
|
791 |
-
audio1|text1
|
792 |
-
audio2|text1
|
793 |
-
...
|
794 |
-
|
795 |
-
```"""
|
796 |
-
)
|
797 |
-
|
798 |
-
bt_prepare = bt_create = gr.Button("prepare")
|
799 |
-
txt_info_prepare = gr.Text(label="info", value="")
|
800 |
-
bt_prepare.click(fn=create_metadata, inputs=[project_name], outputs=[txt_info_prepare])
|
801 |
-
|
802 |
-
random_sample_prepare = gr.Button("random sample")
|
803 |
-
|
804 |
-
with gr.Row():
|
805 |
-
random_text_prepare = gr.Text(label="Pinyin")
|
806 |
-
random_audio_prepare = gr.Audio(label="Audio", type="filepath")
|
807 |
-
|
808 |
-
random_sample_prepare.click(
|
809 |
-
fn=get_random_sample_prepare, inputs=[project_name], outputs=[random_text_prepare, random_audio_prepare]
|
810 |
-
)
|
811 |
-
|
812 |
-
with gr.TabItem("train Data"):
|
813 |
-
with gr.Row():
|
814 |
-
bt_calculate = bt_create = gr.Button("Auto Settings")
|
815 |
-
ch_finetune = bt_create = gr.Checkbox(label="finetune", value=True)
|
816 |
-
lb_samples = gr.Label(label="samples")
|
817 |
-
batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")
|
818 |
-
|
819 |
-
with gr.Row():
|
820 |
-
exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
|
821 |
-
learning_rate = gr.Number(label="Learning Rate", value=1e-5, step=1e-5)
|
822 |
-
|
823 |
-
with gr.Row():
|
824 |
-
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000)
|
825 |
-
max_samples = gr.Number(label="Max Samples", value=64)
|
826 |
-
|
827 |
-
with gr.Row():
|
828 |
-
grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1)
|
829 |
-
max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0)
|
830 |
-
|
831 |
-
with gr.Row():
|
832 |
-
epochs = gr.Number(label="Epochs", value=10)
|
833 |
-
num_warmup_updates = gr.Number(label="Warmup Updates", value=5)
|
834 |
-
|
835 |
-
with gr.Row():
|
836 |
-
save_per_updates = gr.Number(label="Save per Updates", value=10)
|
837 |
-
last_per_steps = gr.Number(label="Last per Steps", value=50)
|
838 |
-
|
839 |
-
with gr.Row():
|
840 |
-
start_button = gr.Button("Start Training")
|
841 |
-
stop_button = gr.Button("Stop Training", interactive=False)
|
842 |
-
|
843 |
-
txt_info_train = gr.Text(label="info", value="")
|
844 |
-
start_button.click(
|
845 |
-
fn=start_training,
|
846 |
-
inputs=[
|
847 |
-
project_name,
|
848 |
-
exp_name,
|
849 |
-
learning_rate,
|
850 |
-
batch_size_per_gpu,
|
851 |
-
batch_size_type,
|
852 |
-
max_samples,
|
853 |
-
grad_accumulation_steps,
|
854 |
-
max_grad_norm,
|
855 |
-
epochs,
|
856 |
-
num_warmup_updates,
|
857 |
-
save_per_updates,
|
858 |
-
last_per_steps,
|
859 |
-
ch_finetune,
|
860 |
-
],
|
861 |
-
outputs=[txt_info_train, start_button, stop_button],
|
862 |
-
)
|
863 |
-
stop_button.click(fn=stop_training, outputs=[txt_info_train, start_button, stop_button])
|
864 |
-
bt_calculate.click(
|
865 |
-
fn=calculate_train,
|
866 |
-
inputs=[
|
867 |
-
project_name,
|
868 |
-
batch_size_type,
|
869 |
-
max_samples,
|
870 |
-
learning_rate,
|
871 |
-
num_warmup_updates,
|
872 |
-
save_per_updates,
|
873 |
-
last_per_steps,
|
874 |
-
ch_finetune,
|
875 |
-
],
|
876 |
-
outputs=[
|
877 |
-
batch_size_per_gpu,
|
878 |
-
max_samples,
|
879 |
-
num_warmup_updates,
|
880 |
-
save_per_updates,
|
881 |
-
last_per_steps,
|
882 |
-
lb_samples,
|
883 |
-
learning_rate,
|
884 |
-
],
|
885 |
-
)
|
886 |
-
|
887 |
-
with gr.TabItem("reduse checkpoint"):
|
888 |
-
txt_path_checkpoint = gr.Text(label="path checkpoint :")
|
889 |
-
txt_path_checkpoint_small = gr.Text(label="path output :")
|
890 |
-
txt_info_reduse = gr.Text(label="info", value="")
|
891 |
-
reduse_button = gr.Button("reduse")
|
892 |
-
reduse_button.click(
|
893 |
-
fn=extract_and_save_ema_model,
|
894 |
-
inputs=[txt_path_checkpoint, txt_path_checkpoint_small],
|
895 |
-
outputs=[txt_info_reduse],
|
896 |
-
)
|
897 |
-
|
898 |
-
with gr.TabItem("vocab check experiment"):
|
899 |
-
check_button = gr.Button("check vocab")
|
900 |
-
txt_info_check = gr.Text(label="info", value="")
|
901 |
-
check_button.click(fn=vocab_check, inputs=[project_name], outputs=[txt_info_check])
|
902 |
-
|
903 |
-
with gr.TabItem("test model"):
|
904 |
-
exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
905 |
-
nfe_step = gr.Number(label="n_step", value=32)
|
906 |
-
file_checkpoint_pt = gr.Textbox(label="Checkpoint", value="")
|
907 |
-
|
908 |
-
random_sample_infer = gr.Button("random sample")
|
909 |
-
|
910 |
-
ref_text = gr.Textbox(label="ref text")
|
911 |
-
ref_audio = gr.Audio(label="audio ref", type="filepath")
|
912 |
-
gen_text = gr.Textbox(label="gen text")
|
913 |
-
random_sample_infer.click(
|
914 |
-
fn=get_random_sample_infer, inputs=[project_name], outputs=[ref_text, gen_text, ref_audio]
|
915 |
-
)
|
916 |
-
check_button_infer = gr.Button("infer")
|
917 |
-
gen_audio = gr.Audio(label="audio gen", type="filepath")
|
918 |
-
|
919 |
-
check_button_infer.click(
|
920 |
-
fn=infer,
|
921 |
-
inputs=[file_checkpoint_pt, exp_name, ref_text, ref_audio, gen_text, nfe_step],
|
922 |
-
outputs=[gen_audio],
|
923 |
-
)
|
924 |
-
|
925 |
-
|
926 |
-
@click.command()
|
927 |
-
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
|
928 |
-
@click.option("--host", "-H", default=None, help="Host to run the app on")
|
929 |
-
@click.option(
|
930 |
-
"--share",
|
931 |
-
"-s",
|
932 |
-
default=False,
|
933 |
-
is_flag=True,
|
934 |
-
help="Share the app via Gradio share link",
|
935 |
-
)
|
936 |
-
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
|
937 |
-
def main(port, host, share, api):
|
938 |
-
global app
|
939 |
-
print("Starting app...")
|
940 |
-
app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api)
|
941 |
-
|
942 |
-
|
943 |
-
if __name__ == "__main__":
|
944 |
-
main()
|
|
|
1 |
+
import gc
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import platform
|
5 |
+
import psutil
|
6 |
+
import random
|
7 |
+
import signal
|
8 |
+
import shutil
|
9 |
+
import subprocess
|
10 |
+
import sys
|
11 |
+
import tempfile
|
12 |
+
import time
|
13 |
+
from glob import glob
|
14 |
+
|
15 |
+
import click
|
16 |
+
import gradio as gr
|
17 |
+
import librosa
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torchaudio
|
21 |
+
from datasets import Dataset as Dataset_
|
22 |
+
from datasets.arrow_writer import ArrowWriter
|
23 |
+
from scipy.io import wavfile
|
24 |
+
from transformers import pipeline
|
25 |
+
|
26 |
+
from f5_tts.api import F5TTS
|
27 |
+
from f5_tts.model.utils import convert_char_to_pinyin
|
28 |
+
|
29 |
+
|
30 |
+
training_process = None
|
31 |
+
system = platform.system()
|
32 |
+
python_executable = sys.executable or "python"
|
33 |
+
tts_api = None
|
34 |
+
last_checkpoint = ""
|
35 |
+
last_device = ""
|
36 |
+
|
37 |
+
path_data = "data"
|
38 |
+
|
39 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
40 |
+
|
41 |
+
pipe = None
|
42 |
+
|
43 |
+
|
44 |
+
# Load metadata
|
45 |
+
def get_audio_duration(audio_path):
|
46 |
+
"""Calculate the duration of an audio file."""
|
47 |
+
audio, sample_rate = torchaudio.load(audio_path)
|
48 |
+
num_channels = audio.shape[0]
|
49 |
+
return audio.shape[1] / (sample_rate * num_channels)
|
50 |
+
|
51 |
+
|
52 |
+
def clear_text(text):
|
53 |
+
"""Clean and prepare text by lowering the case and stripping whitespace."""
|
54 |
+
return text.lower().strip()
|
55 |
+
|
56 |
+
|
57 |
+
def get_rms(
|
58 |
+
y,
|
59 |
+
frame_length=2048,
|
60 |
+
hop_length=512,
|
61 |
+
pad_mode="constant",
|
62 |
+
): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
|
63 |
+
padding = (int(frame_length // 2), int(frame_length // 2))
|
64 |
+
y = np.pad(y, padding, mode=pad_mode)
|
65 |
+
|
66 |
+
axis = -1
|
67 |
+
# put our new within-frame axis at the end for now
|
68 |
+
out_strides = y.strides + tuple([y.strides[axis]])
|
69 |
+
# Reduce the shape on the framing axis
|
70 |
+
x_shape_trimmed = list(y.shape)
|
71 |
+
x_shape_trimmed[axis] -= frame_length - 1
|
72 |
+
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
|
73 |
+
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
|
74 |
+
if axis < 0:
|
75 |
+
target_axis = axis - 1
|
76 |
+
else:
|
77 |
+
target_axis = axis + 1
|
78 |
+
xw = np.moveaxis(xw, -1, target_axis)
|
79 |
+
# Downsample along the target axis
|
80 |
+
slices = [slice(None)] * xw.ndim
|
81 |
+
slices[axis] = slice(0, None, hop_length)
|
82 |
+
x = xw[tuple(slices)]
|
83 |
+
|
84 |
+
# Calculate power
|
85 |
+
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
|
86 |
+
|
87 |
+
return np.sqrt(power)
|
88 |
+
|
89 |
+
|
90 |
+
class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
sr: int,
|
94 |
+
threshold: float = -40.0,
|
95 |
+
min_length: int = 2000,
|
96 |
+
min_interval: int = 300,
|
97 |
+
hop_size: int = 20,
|
98 |
+
max_sil_kept: int = 2000,
|
99 |
+
):
|
100 |
+
if not min_length >= min_interval >= hop_size:
|
101 |
+
raise ValueError("The following condition must be satisfied: min_length >= min_interval >= hop_size")
|
102 |
+
if not max_sil_kept >= hop_size:
|
103 |
+
raise ValueError("The following condition must be satisfied: max_sil_kept >= hop_size")
|
104 |
+
min_interval = sr * min_interval / 1000
|
105 |
+
self.threshold = 10 ** (threshold / 20.0)
|
106 |
+
self.hop_size = round(sr * hop_size / 1000)
|
107 |
+
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
108 |
+
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
109 |
+
self.min_interval = round(min_interval / self.hop_size)
|
110 |
+
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
111 |
+
|
112 |
+
def _apply_slice(self, waveform, begin, end):
|
113 |
+
if len(waveform.shape) > 1:
|
114 |
+
return waveform[:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)]
|
115 |
+
else:
|
116 |
+
return waveform[begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)]
|
117 |
+
|
118 |
+
# @timeit
|
119 |
+
def slice(self, waveform):
|
120 |
+
if len(waveform.shape) > 1:
|
121 |
+
samples = waveform.mean(axis=0)
|
122 |
+
else:
|
123 |
+
samples = waveform
|
124 |
+
if samples.shape[0] <= self.min_length:
|
125 |
+
return [waveform]
|
126 |
+
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
|
127 |
+
sil_tags = []
|
128 |
+
silence_start = None
|
129 |
+
clip_start = 0
|
130 |
+
for i, rms in enumerate(rms_list):
|
131 |
+
# Keep looping while frame is silent.
|
132 |
+
if rms < self.threshold:
|
133 |
+
# Record start of silent frames.
|
134 |
+
if silence_start is None:
|
135 |
+
silence_start = i
|
136 |
+
continue
|
137 |
+
# Keep looping while frame is not silent and silence start has not been recorded.
|
138 |
+
if silence_start is None:
|
139 |
+
continue
|
140 |
+
# Clear recorded silence start if interval is not enough or clip is too short
|
141 |
+
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
142 |
+
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
|
143 |
+
if not is_leading_silence and not need_slice_middle:
|
144 |
+
silence_start = None
|
145 |
+
continue
|
146 |
+
# Need slicing. Record the range of silent frames to be removed.
|
147 |
+
if i - silence_start <= self.max_sil_kept:
|
148 |
+
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
149 |
+
if silence_start == 0:
|
150 |
+
sil_tags.append((0, pos))
|
151 |
+
else:
|
152 |
+
sil_tags.append((pos, pos))
|
153 |
+
clip_start = pos
|
154 |
+
elif i - silence_start <= self.max_sil_kept * 2:
|
155 |
+
pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
|
156 |
+
pos += i - self.max_sil_kept
|
157 |
+
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
158 |
+
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
|
159 |
+
if silence_start == 0:
|
160 |
+
sil_tags.append((0, pos_r))
|
161 |
+
clip_start = pos_r
|
162 |
+
else:
|
163 |
+
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
164 |
+
clip_start = max(pos_r, pos)
|
165 |
+
else:
|
166 |
+
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
167 |
+
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
|
168 |
+
if silence_start == 0:
|
169 |
+
sil_tags.append((0, pos_r))
|
170 |
+
else:
|
171 |
+
sil_tags.append((pos_l, pos_r))
|
172 |
+
clip_start = pos_r
|
173 |
+
silence_start = None
|
174 |
+
# Deal with trailing silence.
|
175 |
+
total_frames = rms_list.shape[0]
|
176 |
+
if silence_start is not None and total_frames - silence_start >= self.min_interval:
|
177 |
+
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
178 |
+
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
|
179 |
+
sil_tags.append((pos, total_frames + 1))
|
180 |
+
# Apply and return slices.
|
181 |
+
####音频+起始时间+终止时间
|
182 |
+
if len(sil_tags) == 0:
|
183 |
+
return [[waveform, 0, int(total_frames * self.hop_size)]]
|
184 |
+
else:
|
185 |
+
chunks = []
|
186 |
+
if sil_tags[0][0] > 0:
|
187 |
+
chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]), 0, int(sil_tags[0][0] * self.hop_size)])
|
188 |
+
for i in range(len(sil_tags) - 1):
|
189 |
+
chunks.append(
|
190 |
+
[
|
191 |
+
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),
|
192 |
+
int(sil_tags[i][1] * self.hop_size),
|
193 |
+
int(sil_tags[i + 1][0] * self.hop_size),
|
194 |
+
]
|
195 |
+
)
|
196 |
+
if sil_tags[-1][1] < total_frames:
|
197 |
+
chunks.append(
|
198 |
+
[
|
199 |
+
self._apply_slice(waveform, sil_tags[-1][1], total_frames),
|
200 |
+
int(sil_tags[-1][1] * self.hop_size),
|
201 |
+
int(total_frames * self.hop_size),
|
202 |
+
]
|
203 |
+
)
|
204 |
+
return chunks
|
205 |
+
|
206 |
+
|
207 |
+
# terminal
|
208 |
+
def terminate_process_tree(pid, including_parent=True):
|
209 |
+
try:
|
210 |
+
parent = psutil.Process(pid)
|
211 |
+
except psutil.NoSuchProcess:
|
212 |
+
# Process already terminated
|
213 |
+
return
|
214 |
+
|
215 |
+
children = parent.children(recursive=True)
|
216 |
+
for child in children:
|
217 |
+
try:
|
218 |
+
os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
|
219 |
+
except OSError:
|
220 |
+
pass
|
221 |
+
if including_parent:
|
222 |
+
try:
|
223 |
+
os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
|
224 |
+
except OSError:
|
225 |
+
pass
|
226 |
+
|
227 |
+
|
228 |
+
def terminate_process(pid):
|
229 |
+
if system == "Windows":
|
230 |
+
cmd = f"taskkill /t /f /pid {pid}"
|
231 |
+
os.system(cmd)
|
232 |
+
else:
|
233 |
+
terminate_process_tree(pid)
|
234 |
+
|
235 |
+
|
236 |
+
def start_training(
|
237 |
+
dataset_name="",
|
238 |
+
exp_name="F5TTS_Base",
|
239 |
+
learning_rate=1e-4,
|
240 |
+
batch_size_per_gpu=400,
|
241 |
+
batch_size_type="frame",
|
242 |
+
max_samples=64,
|
243 |
+
grad_accumulation_steps=1,
|
244 |
+
max_grad_norm=1.0,
|
245 |
+
epochs=11,
|
246 |
+
num_warmup_updates=200,
|
247 |
+
save_per_updates=400,
|
248 |
+
last_per_steps=800,
|
249 |
+
finetune=True,
|
250 |
+
):
|
251 |
+
global training_process, tts_api
|
252 |
+
|
253 |
+
if tts_api is not None:
|
254 |
+
del tts_api
|
255 |
+
gc.collect()
|
256 |
+
torch.cuda.empty_cache()
|
257 |
+
tts_api = None
|
258 |
+
|
259 |
+
path_project = os.path.join(path_data, dataset_name + "_pinyin")
|
260 |
+
|
261 |
+
if not os.path.isdir(path_project):
|
262 |
+
yield (
|
263 |
+
f"There is not project with name {dataset_name}",
|
264 |
+
gr.update(interactive=True),
|
265 |
+
gr.update(interactive=False),
|
266 |
+
)
|
267 |
+
return
|
268 |
+
|
269 |
+
file_raw = os.path.join(path_project, "raw.arrow")
|
270 |
+
if not os.path.isfile(file_raw):
|
271 |
+
yield f"There is no file {file_raw}", gr.update(interactive=True), gr.update(interactive=False)
|
272 |
+
return
|
273 |
+
|
274 |
+
# Check if a training process is already running
|
275 |
+
if training_process is not None:
|
276 |
+
return "Train run already!", gr.update(interactive=False), gr.update(interactive=True)
|
277 |
+
|
278 |
+
yield "start train", gr.update(interactive=False), gr.update(interactive=False)
|
279 |
+
|
280 |
+
# Command to run the training script with the specified arguments
|
281 |
+
cmd = (
|
282 |
+
f"accelerate launch finetune-cli.py --exp_name {exp_name} "
|
283 |
+
f"--learning_rate {learning_rate} "
|
284 |
+
f"--batch_size_per_gpu {batch_size_per_gpu} "
|
285 |
+
f"--batch_size_type {batch_size_type} "
|
286 |
+
f"--max_samples {max_samples} "
|
287 |
+
f"--grad_accumulation_steps {grad_accumulation_steps} "
|
288 |
+
f"--max_grad_norm {max_grad_norm} "
|
289 |
+
f"--epochs {epochs} "
|
290 |
+
f"--num_warmup_updates {num_warmup_updates} "
|
291 |
+
f"--save_per_updates {save_per_updates} "
|
292 |
+
f"--last_per_steps {last_per_steps} "
|
293 |
+
f"--dataset_name {dataset_name}"
|
294 |
+
)
|
295 |
+
if finetune:
|
296 |
+
cmd += f" --finetune {finetune}"
|
297 |
+
|
298 |
+
print(cmd)
|
299 |
+
|
300 |
+
try:
|
301 |
+
# Start the training process
|
302 |
+
training_process = subprocess.Popen(cmd, shell=True)
|
303 |
+
|
304 |
+
time.sleep(5)
|
305 |
+
yield "train start", gr.update(interactive=False), gr.update(interactive=True)
|
306 |
+
|
307 |
+
# Wait for the training process to finish
|
308 |
+
training_process.wait()
|
309 |
+
time.sleep(1)
|
310 |
+
|
311 |
+
if training_process is None:
|
312 |
+
text_info = "train stop"
|
313 |
+
else:
|
314 |
+
text_info = "train complete !"
|
315 |
+
|
316 |
+
except Exception as e: # Catch all exceptions
|
317 |
+
# Ensure that we reset the training process variable in case of an error
|
318 |
+
text_info = f"An error occurred: {str(e)}"
|
319 |
+
|
320 |
+
training_process = None
|
321 |
+
|
322 |
+
yield text_info, gr.update(interactive=True), gr.update(interactive=False)
|
323 |
+
|
324 |
+
|
325 |
+
def stop_training():
|
326 |
+
global training_process
|
327 |
+
if training_process is None:
|
328 |
+
return "Train not run !", gr.update(interactive=True), gr.update(interactive=False)
|
329 |
+
terminate_process_tree(training_process.pid)
|
330 |
+
training_process = None
|
331 |
+
return "train stop", gr.update(interactive=True), gr.update(interactive=False)
|
332 |
+
|
333 |
+
|
334 |
+
def create_data_project(name):
|
335 |
+
name += "_pinyin"
|
336 |
+
os.makedirs(os.path.join(path_data, name), exist_ok=True)
|
337 |
+
os.makedirs(os.path.join(path_data, name, "dataset"), exist_ok=True)
|
338 |
+
|
339 |
+
|
340 |
+
def transcribe(file_audio, language="english"):
|
341 |
+
global pipe
|
342 |
+
|
343 |
+
if pipe is None:
|
344 |
+
pipe = pipeline(
|
345 |
+
"automatic-speech-recognition",
|
346 |
+
model="openai/whisper-large-v3-turbo",
|
347 |
+
torch_dtype=torch.float16,
|
348 |
+
device=device,
|
349 |
+
)
|
350 |
+
|
351 |
+
text_transcribe = pipe(
|
352 |
+
file_audio,
|
353 |
+
chunk_length_s=30,
|
354 |
+
batch_size=128,
|
355 |
+
generate_kwargs={"task": "transcribe", "language": language},
|
356 |
+
return_timestamps=False,
|
357 |
+
)["text"].strip()
|
358 |
+
return text_transcribe
|
359 |
+
|
360 |
+
|
361 |
+
def transcribe_all(name_project, audio_files, language, user=False, progress=gr.Progress()):
|
362 |
+
name_project += "_pinyin"
|
363 |
+
path_project = os.path.join(path_data, name_project)
|
364 |
+
path_dataset = os.path.join(path_project, "dataset")
|
365 |
+
path_project_wavs = os.path.join(path_project, "wavs")
|
366 |
+
file_metadata = os.path.join(path_project, "metadata.csv")
|
367 |
+
|
368 |
+
if audio_files is None:
|
369 |
+
return "You need to load an audio file."
|
370 |
+
|
371 |
+
if os.path.isdir(path_project_wavs):
|
372 |
+
shutil.rmtree(path_project_wavs)
|
373 |
+
|
374 |
+
if os.path.isfile(file_metadata):
|
375 |
+
os.remove(file_metadata)
|
376 |
+
|
377 |
+
os.makedirs(path_project_wavs, exist_ok=True)
|
378 |
+
|
379 |
+
if user:
|
380 |
+
file_audios = [
|
381 |
+
file
|
382 |
+
for format in ("*.wav", "*.ogg", "*.opus", "*.mp3", "*.flac")
|
383 |
+
for file in glob(os.path.join(path_dataset, format))
|
384 |
+
]
|
385 |
+
if file_audios == []:
|
386 |
+
return "No audio file was found in the dataset."
|
387 |
+
else:
|
388 |
+
file_audios = audio_files
|
389 |
+
|
390 |
+
alpha = 0.5
|
391 |
+
_max = 1.0
|
392 |
+
slicer = Slicer(24000)
|
393 |
+
|
394 |
+
num = 0
|
395 |
+
error_num = 0
|
396 |
+
data = ""
|
397 |
+
for file_audio in progress.tqdm(file_audios, desc="transcribe files", total=len((file_audios))):
|
398 |
+
audio, _ = librosa.load(file_audio, sr=24000, mono=True)
|
399 |
+
|
400 |
+
list_slicer = slicer.slice(audio)
|
401 |
+
for chunk, start, end in progress.tqdm(list_slicer, total=len(list_slicer), desc="slicer files"):
|
402 |
+
name_segment = os.path.join(f"segment_{num}")
|
403 |
+
file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav")
|
404 |
+
|
405 |
+
tmp_max = np.abs(chunk).max()
|
406 |
+
if tmp_max > 1:
|
407 |
+
chunk /= tmp_max
|
408 |
+
chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
|
409 |
+
wavfile.write(file_segment, 24000, (chunk * 32767).astype(np.int16))
|
410 |
+
|
411 |
+
try:
|
412 |
+
text = transcribe(file_segment, language)
|
413 |
+
text = text.lower().strip().replace('"', "")
|
414 |
+
|
415 |
+
data += f"{name_segment}|{text}\n"
|
416 |
+
|
417 |
+
num += 1
|
418 |
+
except: # noqa: E722
|
419 |
+
error_num += 1
|
420 |
+
|
421 |
+
with open(file_metadata, "w", encoding="utf-8") as f:
|
422 |
+
f.write(data)
|
423 |
+
|
424 |
+
if error_num != []:
|
425 |
+
error_text = f"\nerror files : {error_num}"
|
426 |
+
else:
|
427 |
+
error_text = ""
|
428 |
+
|
429 |
+
return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}"
|
430 |
+
|
431 |
+
|
432 |
+
def format_seconds_to_hms(seconds):
|
433 |
+
hours = int(seconds / 3600)
|
434 |
+
minutes = int((seconds % 3600) / 60)
|
435 |
+
seconds = seconds % 60
|
436 |
+
return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds))
|
437 |
+
|
438 |
+
|
439 |
+
def create_metadata(name_project, progress=gr.Progress()):
|
440 |
+
name_project += "_pinyin"
|
441 |
+
path_project = os.path.join(path_data, name_project)
|
442 |
+
path_project_wavs = os.path.join(path_project, "wavs")
|
443 |
+
file_metadata = os.path.join(path_project, "metadata.csv")
|
444 |
+
file_raw = os.path.join(path_project, "raw.arrow")
|
445 |
+
file_duration = os.path.join(path_project, "duration.json")
|
446 |
+
file_vocab = os.path.join(path_project, "vocab.txt")
|
447 |
+
|
448 |
+
if not os.path.isfile(file_metadata):
|
449 |
+
return "The file was not found in " + file_metadata
|
450 |
+
|
451 |
+
with open(file_metadata, "r", encoding="utf-8") as f:
|
452 |
+
data = f.read()
|
453 |
+
|
454 |
+
audio_path_list = []
|
455 |
+
text_list = []
|
456 |
+
duration_list = []
|
457 |
+
|
458 |
+
count = data.split("\n")
|
459 |
+
lenght = 0
|
460 |
+
result = []
|
461 |
+
error_files = []
|
462 |
+
for line in progress.tqdm(data.split("\n"), total=count):
|
463 |
+
sp_line = line.split("|")
|
464 |
+
if len(sp_line) != 2:
|
465 |
+
continue
|
466 |
+
name_audio, text = sp_line[:2]
|
467 |
+
|
468 |
+
file_audio = os.path.join(path_project_wavs, name_audio + ".wav")
|
469 |
+
|
470 |
+
if not os.path.isfile(file_audio):
|
471 |
+
error_files.append(file_audio)
|
472 |
+
continue
|
473 |
+
|
474 |
+
duraction = get_audio_duration(file_audio)
|
475 |
+
if duraction < 2 and duraction > 15:
|
476 |
+
continue
|
477 |
+
if len(text) < 4:
|
478 |
+
continue
|
479 |
+
|
480 |
+
text = clear_text(text)
|
481 |
+
text = convert_char_to_pinyin([text], polyphone=True)[0]
|
482 |
+
|
483 |
+
audio_path_list.append(file_audio)
|
484 |
+
duration_list.append(duraction)
|
485 |
+
text_list.append(text)
|
486 |
+
|
487 |
+
result.append({"audio_path": file_audio, "text": text, "duration": duraction})
|
488 |
+
|
489 |
+
lenght += duraction
|
490 |
+
|
491 |
+
if duration_list == []:
|
492 |
+
error_files_text = "\n".join(error_files)
|
493 |
+
return f"Error: No audio files found in the specified path : \n{error_files_text}"
|
494 |
+
|
495 |
+
min_second = round(min(duration_list), 2)
|
496 |
+
max_second = round(max(duration_list), 2)
|
497 |
+
|
498 |
+
with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
|
499 |
+
for line in progress.tqdm(result, total=len(result), desc="prepare data"):
|
500 |
+
writer.write(line)
|
501 |
+
|
502 |
+
with open(file_duration, "w", encoding="utf-8") as f:
|
503 |
+
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
504 |
+
|
505 |
+
file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt"
|
506 |
+
if not os.path.isfile(file_vocab_finetune):
|
507 |
+
return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!"
|
508 |
+
shutil.copy2(file_vocab_finetune, file_vocab)
|
509 |
+
|
510 |
+
if error_files != []:
|
511 |
+
error_text = "error files\n" + "\n".join(error_files)
|
512 |
+
else:
|
513 |
+
error_text = ""
|
514 |
+
|
515 |
+
return f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\n{error_text}"
|
516 |
+
|
517 |
+
|
518 |
+
def check_user(value):
|
519 |
+
return gr.update(visible=not value), gr.update(visible=value)
|
520 |
+
|
521 |
+
|
522 |
+
def calculate_train(
|
523 |
+
name_project,
|
524 |
+
batch_size_type,
|
525 |
+
max_samples,
|
526 |
+
learning_rate,
|
527 |
+
num_warmup_updates,
|
528 |
+
save_per_updates,
|
529 |
+
last_per_steps,
|
530 |
+
finetune,
|
531 |
+
):
|
532 |
+
name_project += "_pinyin"
|
533 |
+
path_project = os.path.join(path_data, name_project)
|
534 |
+
file_duraction = os.path.join(path_project, "duration.json")
|
535 |
+
|
536 |
+
if not os.path.isfile(file_duraction):
|
537 |
+
return (
|
538 |
+
1000,
|
539 |
+
max_samples,
|
540 |
+
num_warmup_updates,
|
541 |
+
save_per_updates,
|
542 |
+
last_per_steps,
|
543 |
+
"project not found !",
|
544 |
+
learning_rate,
|
545 |
+
)
|
546 |
+
|
547 |
+
with open(file_duraction, "r") as file:
|
548 |
+
data = json.load(file)
|
549 |
+
|
550 |
+
duration_list = data["duration"]
|
551 |
+
|
552 |
+
samples = len(duration_list)
|
553 |
+
|
554 |
+
if torch.cuda.is_available():
|
555 |
+
gpu_properties = torch.cuda.get_device_properties(0)
|
556 |
+
total_memory = gpu_properties.total_memory / (1024**3)
|
557 |
+
elif torch.backends.mps.is_available():
|
558 |
+
total_memory = psutil.virtual_memory().available / (1024**3)
|
559 |
+
|
560 |
+
if batch_size_type == "frame":
|
561 |
+
batch = int(total_memory * 0.5)
|
562 |
+
batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch)
|
563 |
+
batch_size_per_gpu = int(38400 / batch)
|
564 |
+
else:
|
565 |
+
batch_size_per_gpu = int(total_memory / 8)
|
566 |
+
batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu)
|
567 |
+
batch = batch_size_per_gpu
|
568 |
+
|
569 |
+
if batch_size_per_gpu <= 0:
|
570 |
+
batch_size_per_gpu = 1
|
571 |
+
|
572 |
+
if samples < 64:
|
573 |
+
max_samples = int(samples * 0.25)
|
574 |
+
else:
|
575 |
+
max_samples = 64
|
576 |
+
|
577 |
+
num_warmup_updates = int(samples * 0.05)
|
578 |
+
save_per_updates = int(samples * 0.10)
|
579 |
+
last_per_steps = int(save_per_updates * 5)
|
580 |
+
|
581 |
+
max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples)
|
582 |
+
num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates)
|
583 |
+
save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates)
|
584 |
+
last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps)
|
585 |
+
|
586 |
+
if finetune:
|
587 |
+
learning_rate = 1e-5
|
588 |
+
else:
|
589 |
+
learning_rate = 7.5e-5
|
590 |
+
|
591 |
+
return batch_size_per_gpu, max_samples, num_warmup_updates, save_per_updates, last_per_steps, samples, learning_rate
|
592 |
+
|
593 |
+
|
594 |
+
def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str) -> None:
|
595 |
+
try:
|
596 |
+
checkpoint = torch.load(checkpoint_path)
|
597 |
+
print("Original Checkpoint Keys:", checkpoint.keys())
|
598 |
+
|
599 |
+
ema_model_state_dict = checkpoint.get("ema_model_state_dict", None)
|
600 |
+
|
601 |
+
if ema_model_state_dict is not None:
|
602 |
+
new_checkpoint = {"ema_model_state_dict": ema_model_state_dict}
|
603 |
+
torch.save(new_checkpoint, new_checkpoint_path)
|
604 |
+
return f"New checkpoint saved at: {new_checkpoint_path}"
|
605 |
+
else:
|
606 |
+
return "No 'ema_model_state_dict' found in the checkpoint."
|
607 |
+
|
608 |
+
except Exception as e:
|
609 |
+
return f"An error occurred: {e}"
|
610 |
+
|
611 |
+
|
612 |
+
def vocab_check(project_name):
|
613 |
+
name_project = project_name + "_pinyin"
|
614 |
+
path_project = os.path.join(path_data, name_project)
|
615 |
+
|
616 |
+
file_metadata = os.path.join(path_project, "metadata.csv")
|
617 |
+
|
618 |
+
file_vocab = "data/Emilia_ZH_EN_pinyin/vocab.txt"
|
619 |
+
if not os.path.isfile(file_vocab):
|
620 |
+
return f"the file {file_vocab} not found !"
|
621 |
+
|
622 |
+
with open(file_vocab, "r", encoding="utf-8") as f:
|
623 |
+
data = f.read()
|
624 |
+
|
625 |
+
vocab = data.split("\n")
|
626 |
+
|
627 |
+
if not os.path.isfile(file_metadata):
|
628 |
+
return f"the file {file_metadata} not found !"
|
629 |
+
|
630 |
+
with open(file_metadata, "r", encoding="utf-8") as f:
|
631 |
+
data = f.read()
|
632 |
+
|
633 |
+
miss_symbols = []
|
634 |
+
miss_symbols_keep = {}
|
635 |
+
for item in data.split("\n"):
|
636 |
+
sp = item.split("|")
|
637 |
+
if len(sp) != 2:
|
638 |
+
continue
|
639 |
+
|
640 |
+
text = sp[1].lower().strip()
|
641 |
+
|
642 |
+
for t in text:
|
643 |
+
if t not in vocab and t not in miss_symbols_keep:
|
644 |
+
miss_symbols.append(t)
|
645 |
+
miss_symbols_keep[t] = t
|
646 |
+
if miss_symbols == []:
|
647 |
+
info = "You can train using your language !"
|
648 |
+
else:
|
649 |
+
info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols)
|
650 |
+
|
651 |
+
return info
|
652 |
+
|
653 |
+
|
654 |
+
def get_random_sample_prepare(project_name):
|
655 |
+
name_project = project_name + "_pinyin"
|
656 |
+
path_project = os.path.join(path_data, name_project)
|
657 |
+
file_arrow = os.path.join(path_project, "raw.arrow")
|
658 |
+
if not os.path.isfile(file_arrow):
|
659 |
+
return "", None
|
660 |
+
dataset = Dataset_.from_file(file_arrow)
|
661 |
+
random_sample = dataset.shuffle(seed=random.randint(0, 1000)).select([0])
|
662 |
+
text = "[" + " , ".join(["' " + t + " '" for t in random_sample["text"][0]]) + "]"
|
663 |
+
audio_path = random_sample["audio_path"][0]
|
664 |
+
return text, audio_path
|
665 |
+
|
666 |
+
|
667 |
+
def get_random_sample_transcribe(project_name):
|
668 |
+
name_project = project_name + "_pinyin"
|
669 |
+
path_project = os.path.join(path_data, name_project)
|
670 |
+
file_metadata = os.path.join(path_project, "metadata.csv")
|
671 |
+
if not os.path.isfile(file_metadata):
|
672 |
+
return "", None
|
673 |
+
|
674 |
+
data = ""
|
675 |
+
with open(file_metadata, "r", encoding="utf-8") as f:
|
676 |
+
data = f.read()
|
677 |
+
|
678 |
+
list_data = []
|
679 |
+
for item in data.split("\n"):
|
680 |
+
sp = item.split("|")
|
681 |
+
if len(sp) != 2:
|
682 |
+
continue
|
683 |
+
list_data.append([os.path.join(path_project, "wavs", sp[0] + ".wav"), sp[1]])
|
684 |
+
|
685 |
+
if list_data == []:
|
686 |
+
return "", None
|
687 |
+
|
688 |
+
random_item = random.choice(list_data)
|
689 |
+
|
690 |
+
return random_item[1], random_item[0]
|
691 |
+
|
692 |
+
|
693 |
+
def get_random_sample_infer(project_name):
|
694 |
+
text, audio = get_random_sample_transcribe(project_name)
|
695 |
+
return (
|
696 |
+
text,
|
697 |
+
text,
|
698 |
+
audio,
|
699 |
+
)
|
700 |
+
|
701 |
+
|
702 |
+
def infer(file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step):
|
703 |
+
global last_checkpoint, last_device, tts_api
|
704 |
+
|
705 |
+
if not os.path.isfile(file_checkpoint):
|
706 |
+
return None
|
707 |
+
|
708 |
+
if training_process is not None:
|
709 |
+
device_test = "cpu"
|
710 |
+
else:
|
711 |
+
device_test = None
|
712 |
+
|
713 |
+
if last_checkpoint != file_checkpoint or last_device != device_test:
|
714 |
+
if last_checkpoint != file_checkpoint:
|
715 |
+
last_checkpoint = file_checkpoint
|
716 |
+
if last_device != device_test:
|
717 |
+
last_device = device_test
|
718 |
+
|
719 |
+
tts_api = F5TTS(model_type=exp_name, ckpt_file=file_checkpoint, device=device_test)
|
720 |
+
|
721 |
+
print("update", device_test, file_checkpoint)
|
722 |
+
|
723 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
724 |
+
tts_api.infer(gen_text=gen_text, ref_text=ref_text, ref_file=ref_audio, nfe_step=nfe_step, file_wave=f.name)
|
725 |
+
return f.name
|
726 |
+
|
727 |
+
|
728 |
+
with gr.Blocks() as app:
|
729 |
+
with gr.Row():
|
730 |
+
project_name = gr.Textbox(label="project name", value="my_speak")
|
731 |
+
bt_create = gr.Button("create new project")
|
732 |
+
|
733 |
+
bt_create.click(fn=create_data_project, inputs=[project_name])
|
734 |
+
|
735 |
+
with gr.Tabs():
|
736 |
+
with gr.TabItem("transcribe Data"):
|
737 |
+
ch_manual = gr.Checkbox(label="user", value=False)
|
738 |
+
|
739 |
+
mark_info_transcribe = gr.Markdown(
|
740 |
+
"""```plaintext
|
741 |
+
Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory.
|
742 |
+
|
743 |
+
my_speak/
|
744 |
+
│
|
745 |
+
└── dataset/
|
746 |
+
├── audio1.wav
|
747 |
+
└── audio2.wav
|
748 |
+
...
|
749 |
+
```""",
|
750 |
+
visible=False,
|
751 |
+
)
|
752 |
+
|
753 |
+
audio_speaker = gr.File(label="voice", type="filepath", file_count="multiple")
|
754 |
+
txt_lang = gr.Text(label="Language", value="english")
|
755 |
+
bt_transcribe = bt_create = gr.Button("transcribe")
|
756 |
+
txt_info_transcribe = gr.Text(label="info", value="")
|
757 |
+
bt_transcribe.click(
|
758 |
+
fn=transcribe_all,
|
759 |
+
inputs=[project_name, audio_speaker, txt_lang, ch_manual],
|
760 |
+
outputs=[txt_info_transcribe],
|
761 |
+
)
|
762 |
+
ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe])
|
763 |
+
|
764 |
+
random_sample_transcribe = gr.Button("random sample")
|
765 |
+
|
766 |
+
with gr.Row():
|
767 |
+
random_text_transcribe = gr.Text(label="Text")
|
768 |
+
random_audio_transcribe = gr.Audio(label="Audio", type="filepath")
|
769 |
+
|
770 |
+
random_sample_transcribe.click(
|
771 |
+
fn=get_random_sample_transcribe,
|
772 |
+
inputs=[project_name],
|
773 |
+
outputs=[random_text_transcribe, random_audio_transcribe],
|
774 |
+
)
|
775 |
+
|
776 |
+
with gr.TabItem("prepare Data"):
|
777 |
+
gr.Markdown(
|
778 |
+
"""```plaintext
|
779 |
+
place all your wavs folder and your metadata.csv file in {your name project}
|
780 |
+
my_speak/
|
781 |
+
│
|
782 |
+
├── wavs/
|
783 |
+
│ ├── audio1.wav
|
784 |
+
│ └── audio2.wav
|
785 |
+
| ...
|
786 |
+
│
|
787 |
+
└── metadata.csv
|
788 |
+
|
789 |
+
file format metadata.csv
|
790 |
+
|
791 |
+
audio1|text1
|
792 |
+
audio2|text1
|
793 |
+
...
|
794 |
+
|
795 |
+
```"""
|
796 |
+
)
|
797 |
+
|
798 |
+
bt_prepare = bt_create = gr.Button("prepare")
|
799 |
+
txt_info_prepare = gr.Text(label="info", value="")
|
800 |
+
bt_prepare.click(fn=create_metadata, inputs=[project_name], outputs=[txt_info_prepare])
|
801 |
+
|
802 |
+
random_sample_prepare = gr.Button("random sample")
|
803 |
+
|
804 |
+
with gr.Row():
|
805 |
+
random_text_prepare = gr.Text(label="Pinyin")
|
806 |
+
random_audio_prepare = gr.Audio(label="Audio", type="filepath")
|
807 |
+
|
808 |
+
random_sample_prepare.click(
|
809 |
+
fn=get_random_sample_prepare, inputs=[project_name], outputs=[random_text_prepare, random_audio_prepare]
|
810 |
+
)
|
811 |
+
|
812 |
+
with gr.TabItem("train Data"):
|
813 |
+
with gr.Row():
|
814 |
+
bt_calculate = bt_create = gr.Button("Auto Settings")
|
815 |
+
ch_finetune = bt_create = gr.Checkbox(label="finetune", value=True)
|
816 |
+
lb_samples = gr.Label(label="samples")
|
817 |
+
batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")
|
818 |
+
|
819 |
+
with gr.Row():
|
820 |
+
exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
|
821 |
+
learning_rate = gr.Number(label="Learning Rate", value=1e-5, step=1e-5)
|
822 |
+
|
823 |
+
with gr.Row():
|
824 |
+
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000)
|
825 |
+
max_samples = gr.Number(label="Max Samples", value=64)
|
826 |
+
|
827 |
+
with gr.Row():
|
828 |
+
grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1)
|
829 |
+
max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0)
|
830 |
+
|
831 |
+
with gr.Row():
|
832 |
+
epochs = gr.Number(label="Epochs", value=10)
|
833 |
+
num_warmup_updates = gr.Number(label="Warmup Updates", value=5)
|
834 |
+
|
835 |
+
with gr.Row():
|
836 |
+
save_per_updates = gr.Number(label="Save per Updates", value=10)
|
837 |
+
last_per_steps = gr.Number(label="Last per Steps", value=50)
|
838 |
+
|
839 |
+
with gr.Row():
|
840 |
+
start_button = gr.Button("Start Training")
|
841 |
+
stop_button = gr.Button("Stop Training", interactive=False)
|
842 |
+
|
843 |
+
txt_info_train = gr.Text(label="info", value="")
|
844 |
+
start_button.click(
|
845 |
+
fn=start_training,
|
846 |
+
inputs=[
|
847 |
+
project_name,
|
848 |
+
exp_name,
|
849 |
+
learning_rate,
|
850 |
+
batch_size_per_gpu,
|
851 |
+
batch_size_type,
|
852 |
+
max_samples,
|
853 |
+
grad_accumulation_steps,
|
854 |
+
max_grad_norm,
|
855 |
+
epochs,
|
856 |
+
num_warmup_updates,
|
857 |
+
save_per_updates,
|
858 |
+
last_per_steps,
|
859 |
+
ch_finetune,
|
860 |
+
],
|
861 |
+
outputs=[txt_info_train, start_button, stop_button],
|
862 |
+
)
|
863 |
+
stop_button.click(fn=stop_training, outputs=[txt_info_train, start_button, stop_button])
|
864 |
+
bt_calculate.click(
|
865 |
+
fn=calculate_train,
|
866 |
+
inputs=[
|
867 |
+
project_name,
|
868 |
+
batch_size_type,
|
869 |
+
max_samples,
|
870 |
+
learning_rate,
|
871 |
+
num_warmup_updates,
|
872 |
+
save_per_updates,
|
873 |
+
last_per_steps,
|
874 |
+
ch_finetune,
|
875 |
+
],
|
876 |
+
outputs=[
|
877 |
+
batch_size_per_gpu,
|
878 |
+
max_samples,
|
879 |
+
num_warmup_updates,
|
880 |
+
save_per_updates,
|
881 |
+
last_per_steps,
|
882 |
+
lb_samples,
|
883 |
+
learning_rate,
|
884 |
+
],
|
885 |
+
)
|
886 |
+
|
887 |
+
with gr.TabItem("reduse checkpoint"):
|
888 |
+
txt_path_checkpoint = gr.Text(label="path checkpoint :")
|
889 |
+
txt_path_checkpoint_small = gr.Text(label="path output :")
|
890 |
+
txt_info_reduse = gr.Text(label="info", value="")
|
891 |
+
reduse_button = gr.Button("reduse")
|
892 |
+
reduse_button.click(
|
893 |
+
fn=extract_and_save_ema_model,
|
894 |
+
inputs=[txt_path_checkpoint, txt_path_checkpoint_small],
|
895 |
+
outputs=[txt_info_reduse],
|
896 |
+
)
|
897 |
+
|
898 |
+
with gr.TabItem("vocab check experiment"):
|
899 |
+
check_button = gr.Button("check vocab")
|
900 |
+
txt_info_check = gr.Text(label="info", value="")
|
901 |
+
check_button.click(fn=vocab_check, inputs=[project_name], outputs=[txt_info_check])
|
902 |
+
|
903 |
+
with gr.TabItem("test model"):
|
904 |
+
exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
905 |
+
nfe_step = gr.Number(label="n_step", value=32)
|
906 |
+
file_checkpoint_pt = gr.Textbox(label="Checkpoint", value="")
|
907 |
+
|
908 |
+
random_sample_infer = gr.Button("random sample")
|
909 |
+
|
910 |
+
ref_text = gr.Textbox(label="ref text")
|
911 |
+
ref_audio = gr.Audio(label="audio ref", type="filepath")
|
912 |
+
gen_text = gr.Textbox(label="gen text")
|
913 |
+
random_sample_infer.click(
|
914 |
+
fn=get_random_sample_infer, inputs=[project_name], outputs=[ref_text, gen_text, ref_audio]
|
915 |
+
)
|
916 |
+
check_button_infer = gr.Button("infer")
|
917 |
+
gen_audio = gr.Audio(label="audio gen", type="filepath")
|
918 |
+
|
919 |
+
check_button_infer.click(
|
920 |
+
fn=infer,
|
921 |
+
inputs=[file_checkpoint_pt, exp_name, ref_text, ref_audio, gen_text, nfe_step],
|
922 |
+
outputs=[gen_audio],
|
923 |
+
)
|
924 |
+
|
925 |
+
|
926 |
+
@click.command()
|
927 |
+
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
|
928 |
+
@click.option("--host", "-H", default=None, help="Host to run the app on")
|
929 |
+
@click.option(
|
930 |
+
"--share",
|
931 |
+
"-s",
|
932 |
+
default=False,
|
933 |
+
is_flag=True,
|
934 |
+
help="Share the app via Gradio share link",
|
935 |
+
)
|
936 |
+
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
|
937 |
+
def main(port, host, share, api):
|
938 |
+
global app
|
939 |
+
print("Starting app...")
|
940 |
+
app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api)
|
941 |
+
|
942 |
+
|
943 |
+
if __name__ == "__main__":
|
944 |
+
main()
|
src/f5_tts/{train.py → train/train.py}
RENAMED
File without changes
|