support command line set args
Browse files
src/f5_tts/eval/README.md
CHANGED
@@ -42,8 +42,8 @@ Then update in the following scripts with the paths you put evaluation model ckp
|
|
42 |
Update the path with your batch-inferenced results, and carry out WER / SIM evaluations:
|
43 |
```bash
|
44 |
# Evaluation for Seed-TTS test set
|
45 |
-
python src/f5_tts/eval/eval_seedtts_testset.py
|
46 |
|
47 |
# Evaluation for LibriSpeech-PC test-clean (cross-sentence)
|
48 |
-
python src/f5_tts/eval/eval_librispeech_test_clean.py
|
49 |
```
|
|
|
42 |
Update the path with your batch-inferenced results, and carry out WER / SIM evaluations:
|
43 |
```bash
|
44 |
# Evaluation for Seed-TTS test set
|
45 |
+
python src/f5_tts/eval/eval_seedtts_testset.py --gen_wav_dir <GEN_WAVE_DIR>
|
46 |
|
47 |
# Evaluation for LibriSpeech-PC test-clean (cross-sentence)
|
48 |
+
python src/f5_tts/eval/eval_librispeech_test_clean.py --gen_wav_dir
|
49 |
```
|
src/f5_tts/eval/eval_infer_batch.py
CHANGED
@@ -34,8 +34,6 @@ win_length = 1024
|
|
34 |
n_fft = 1024
|
35 |
target_rms = 0.1
|
36 |
|
37 |
-
|
38 |
-
tokenizer = "pinyin"
|
39 |
rel_path = str(files("f5_tts").joinpath("../../"))
|
40 |
|
41 |
|
@@ -49,6 +47,7 @@ def main():
|
|
49 |
parser.add_argument("-n", "--expname", required=True)
|
50 |
parser.add_argument("-c", "--ckptstep", default=1200000, type=int)
|
51 |
parser.add_argument("-m", "--mel_spec_type", default="vocos", type=str, choices=["bigvgan", "vocos"])
|
|
|
52 |
|
53 |
parser.add_argument("-nfe", "--nfestep", default=32, type=int)
|
54 |
parser.add_argument("-o", "--odemethod", default="euler")
|
@@ -64,6 +63,7 @@ def main():
|
|
64 |
ckpt_step = args.ckptstep
|
65 |
ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
|
66 |
mel_spec_type = args.mel_spec_type
|
|
|
67 |
|
68 |
nfe_step = args.nfestep
|
69 |
ode_method = args.odemethod
|
|
|
34 |
n_fft = 1024
|
35 |
target_rms = 0.1
|
36 |
|
|
|
|
|
37 |
rel_path = str(files("f5_tts").joinpath("../../"))
|
38 |
|
39 |
|
|
|
47 |
parser.add_argument("-n", "--expname", required=True)
|
48 |
parser.add_argument("-c", "--ckptstep", default=1200000, type=int)
|
49 |
parser.add_argument("-m", "--mel_spec_type", default="vocos", type=str, choices=["bigvgan", "vocos"])
|
50 |
+
parser.add_argument("-to", "--tokenizer", default="pinyin", type=str, choices=["pinyin", "char"])
|
51 |
|
52 |
parser.add_argument("-nfe", "--nfestep", default=32, type=int)
|
53 |
parser.add_argument("-o", "--odemethod", default="euler")
|
|
|
63 |
ckpt_step = args.ckptstep
|
64 |
ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
|
65 |
mel_spec_type = args.mel_spec_type
|
66 |
+
tokenizer = args.tokenizer
|
67 |
|
68 |
nfe_step = args.nfestep
|
69 |
ode_method = args.odemethod
|
src/f5_tts/eval/eval_librispeech_test_clean.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
|
3 |
import sys
|
4 |
import os
|
|
|
5 |
|
6 |
sys.path.append(os.getcwd())
|
7 |
|
@@ -19,55 +20,65 @@ from f5_tts.eval.utils_eval import (
|
|
19 |
rel_path = str(files("f5_tts").joinpath("../../"))
|
20 |
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import sys
|
4 |
import os
|
5 |
+
import argparse
|
6 |
|
7 |
sys.path.append(os.getcwd())
|
8 |
|
|
|
20 |
rel_path = str(files("f5_tts").joinpath("../../"))
|
21 |
|
22 |
|
23 |
+
def get_args():
|
24 |
+
parser = argparse.ArgumentParser()
|
25 |
+
parser.add_argument("-e", "--eval_task", type=str, default="wer", choices=["sim", "wer"])
|
26 |
+
parser.add_argument("-l", "--lang", type=str, default="en")
|
27 |
+
parser.add_argument("-g", "--gen_wav_dir", type=str, required=True)
|
28 |
+
parser.add_argument("-p", "--librispeech_test_clean_path", type=str, required=True)
|
29 |
+
parser.add_argument("-n", "--gpu_nums", type=int, default=8, help="Number of GPUs to use")
|
30 |
+
parser.add_argument("--local", action="store_true", help="Use local custom checkpoint directory")
|
31 |
+
return parser.parse_args()
|
32 |
+
|
33 |
+
|
34 |
+
def main():
|
35 |
+
args = get_args()
|
36 |
+
eval_task = args.eval_task
|
37 |
+
lang = args.lang
|
38 |
+
librispeech_test_clean_path = args.librispeech_test_clean_path # test-clean path
|
39 |
+
gen_wav_dir = args.gen_wav_dir
|
40 |
+
metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
|
41 |
+
|
42 |
+
gpus = list(range(args.gpu_nums))
|
43 |
+
test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path)
|
44 |
+
|
45 |
+
## In LibriSpeech, some speakers utilized varying voice characteristics for different characters in the book,
|
46 |
+
## leading to a low similarity for the ground truth in some cases.
|
47 |
+
# test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = True) # eval ground truth
|
48 |
+
|
49 |
+
local = args.local
|
50 |
+
if local: # use local custom checkpoint dir
|
51 |
+
asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3"
|
52 |
+
else:
|
53 |
+
asr_ckpt_dir = "" # auto download to cache dir
|
54 |
+
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
|
55 |
+
|
56 |
+
# --------------------------- WER ---------------------------
|
57 |
+
if eval_task == "wer":
|
58 |
+
wers = []
|
59 |
+
with mp.Pool(processes=len(gpus)) as pool:
|
60 |
+
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
|
61 |
+
results = pool.map(run_asr_wer, args)
|
62 |
+
for wers_ in results:
|
63 |
+
wers.extend(wers_)
|
64 |
+
|
65 |
+
wer = round(np.mean(wers) * 100, 3)
|
66 |
+
print(f"\nTotal {len(wers)} samples")
|
67 |
+
print(f"WER : {wer}%")
|
68 |
+
|
69 |
+
# --------------------------- SIM ---------------------------
|
70 |
+
if eval_task == "sim":
|
71 |
+
sim_list = []
|
72 |
+
with mp.Pool(processes=len(gpus)) as pool:
|
73 |
+
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
|
74 |
+
results = pool.map(run_sim, args)
|
75 |
+
for sim_ in results:
|
76 |
+
sim_list.extend(sim_)
|
77 |
+
|
78 |
+
sim = round(sum(sim_list) / len(sim_list), 3)
|
79 |
+
print(f"\nTotal {len(sim_list)} samples")
|
80 |
+
print(f"SIM : {sim}")
|
81 |
+
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
main()
|
src/f5_tts/eval/eval_seedtts_testset.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
|
3 |
import sys
|
4 |
import os
|
|
|
5 |
|
6 |
sys.path.append(os.getcwd())
|
7 |
|
@@ -19,57 +20,65 @@ from f5_tts.eval.utils_eval import (
|
|
19 |
rel_path = str(files("f5_tts").joinpath("../../"))
|
20 |
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import sys
|
4 |
import os
|
5 |
+
import argparse
|
6 |
|
7 |
sys.path.append(os.getcwd())
|
8 |
|
|
|
20 |
rel_path = str(files("f5_tts").joinpath("../../"))
|
21 |
|
22 |
|
23 |
+
def get_args():
|
24 |
+
parser = argparse.ArgumentParser()
|
25 |
+
parser.add_argument("-e", "--eval_task", type=str, default="wer", choices=["sim", "wer"])
|
26 |
+
parser.add_argument("-l", "--lang", type=str, default="en", choices=["zh", "en"])
|
27 |
+
parser.add_argument("-g", "--gen_wav_dir", type=str, required=True)
|
28 |
+
parser.add_argument("-n", "--gpu_nums", type=int, default=8, help="Number of GPUs to use")
|
29 |
+
parser.add_argument("--local", action="store_true", help="Use local custom checkpoint directory")
|
30 |
+
return parser.parse_args()
|
31 |
+
|
32 |
+
|
33 |
+
def main():
|
34 |
+
args = get_args()
|
35 |
+
eval_task = args.eval_task
|
36 |
+
lang = args.lang
|
37 |
+
gen_wav_dir = args.gen_wav_dir
|
38 |
+
metalst = rel_path + f"/data/seedtts_testset/{lang}/meta.lst" # seed-tts testset
|
39 |
+
|
40 |
+
# NOTE. paraformer-zh result will be slightly different according to the number of gpus, cuz batchsize is different
|
41 |
+
# zh 1.254 seems a result of 4 workers wer_seed_tts
|
42 |
+
gpus = list(range(args.gpu_nums))
|
43 |
+
test_set = get_seed_tts_test(metalst, gen_wav_dir, gpus)
|
44 |
+
|
45 |
+
local = args.local
|
46 |
+
if local: # use local custom checkpoint dir
|
47 |
+
if lang == "zh":
|
48 |
+
asr_ckpt_dir = "../checkpoints/funasr" # paraformer-zh dir under funasr
|
49 |
+
elif lang == "en":
|
50 |
+
asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3"
|
51 |
+
else:
|
52 |
+
asr_ckpt_dir = "" # auto download to cache dir
|
53 |
+
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
|
54 |
+
|
55 |
+
# --------------------------- WER ---------------------------
|
56 |
+
|
57 |
+
if eval_task == "wer":
|
58 |
+
wers = []
|
59 |
+
with mp.Pool(processes=len(gpus)) as pool:
|
60 |
+
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
|
61 |
+
results = pool.map(run_asr_wer, args)
|
62 |
+
for wers_ in results:
|
63 |
+
wers.extend(wers_)
|
64 |
+
|
65 |
+
wer = round(np.mean(wers) * 100, 3)
|
66 |
+
print(f"\nTotal {len(wers)} samples")
|
67 |
+
print(f"WER : {wer}%")
|
68 |
+
|
69 |
+
# --------------------------- SIM ---------------------------
|
70 |
+
if eval_task == "sim":
|
71 |
+
sim_list = []
|
72 |
+
with mp.Pool(processes=len(gpus)) as pool:
|
73 |
+
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
|
74 |
+
results = pool.map(run_sim, args)
|
75 |
+
for sim_ in results:
|
76 |
+
sim_list.extend(sim_)
|
77 |
+
|
78 |
+
sim = round(sum(sim_list) / len(sim_list), 3)
|
79 |
+
print(f"\nTotal {len(sim_list)} samples")
|
80 |
+
print(f"SIM : {sim}")
|
81 |
+
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
main()
|