fix inference-cli; clean-up
Browse files- README.md +19 -21
- inference-cli.py +16 -27
- inference-cli.toml +3 -3
- model/dataset.py +1 -1
- requirements.txt +6 -3
- requirements_gradio.txt +0 -5
- test_infer_batch.py → scripts/eval_infer_batch.py +3 -1
- scripts/eval_infer_batch.sh +13 -0
- test_infer_single_edit.py → speech_edit.py +0 -0
- test_infer_batch.sh +0 -13
- test_infer_single.py +0 -161
- test_train.py → train.py +0 -0
README.md
CHANGED
@@ -58,38 +58,28 @@ Once your datasets are prepared, you can start the training process.
|
|
58 |
# setup accelerate config, e.g. use multi-gpu ddp, fp16
|
59 |
# will be to: ~/.cache/huggingface/accelerate/default_config.yaml
|
60 |
accelerate config
|
61 |
-
accelerate launch
|
62 |
```
|
63 |
An initial guidance on Finetuning [#57](https://github.com/SWivid/F5-TTS/discussions/57).
|
64 |
|
65 |
## Inference
|
66 |
|
67 |
-
To run inference with pretrained models, download the checkpoints from [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS)
|
68 |
|
69 |
-
Currently support
|
70 |
- To avoid possible inference failures, make sure you have seen through the following instructions.
|
71 |
-
- A longer prompt audio allows shorter generated output. The part longer than 30s cannot be generated properly. Consider
|
72 |
- Uppercased letters will be uttered letter by letter, so use lowercased letters for normal words.
|
73 |
- Add some spaces (blank: " ") or punctuations (e.g. "," ".") to explicitly introduce some pauses. If first few words skipped in code-switched generation (cuz different speed with different languages), this might help.
|
74 |
|
75 |
-
###
|
76 |
|
77 |
-
|
78 |
|
79 |
```bash
|
80 |
-
|
81 |
-
# e.g. fix_duration (the total length of prompt + to_generate, currently support up to 30s)
|
82 |
-
# nfe_step (larger takes more time to do more precise inference ode)
|
83 |
-
# ode_method (switch to 'midpoint' for better compatibility with small nfe_step, )
|
84 |
-
# ( though 'midpoint' is 2nd-order ode solver, slower compared to 1st-order 'Euler')
|
85 |
-
python test_infer_single.py
|
86 |
-
```
|
87 |
-
### Speech Editing
|
88 |
-
|
89 |
-
To test speech editing capabilities, use the following command.
|
90 |
|
91 |
-
|
92 |
-
python test_infer_single_edit.py
|
93 |
```
|
94 |
|
95 |
### Gradio App
|
@@ -102,7 +92,7 @@ First, make sure you have the dependencies installed (`pip install -r requiremen
|
|
102 |
pip install -r requirements_gradio.txt
|
103 |
```
|
104 |
|
105 |
-
After installing the dependencies, launch the app (will load ckpt from Huggingface, you may set `ckpt_path` to local file in `gradio_app.py`)
|
106 |
|
107 |
```bash
|
108 |
python gradio_app.py
|
@@ -120,6 +110,14 @@ Or launch a share link:
|
|
120 |
python gradio_app.py --share
|
121 |
```
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
## Evaluation
|
124 |
|
125 |
### Prepare Test Datasets
|
@@ -127,7 +125,7 @@ python gradio_app.py --share
|
|
127 |
1. Seed-TTS test set: Download from [seed-tts-eval](https://github.com/BytedanceSpeech/seed-tts-eval).
|
128 |
2. LibriSpeech test-clean: Download from [OpenSLR](http://www.openslr.org/12/).
|
129 |
3. Unzip the downloaded datasets and place them in the data/ directory.
|
130 |
-
4. Update the path for the test-clean data in `
|
131 |
5. Our filtered LibriSpeech-PC 4-10s subset is already under data/ in this repo
|
132 |
|
133 |
### Batch Inference for Test Set
|
@@ -137,7 +135,7 @@ To run batch inference for evaluations, execute the following commands:
|
|
137 |
```bash
|
138 |
# batch inference for evaluations
|
139 |
accelerate config # if not set before
|
140 |
-
bash
|
141 |
```
|
142 |
|
143 |
### Download Evaluation Model Checkpoints
|
|
|
58 |
# setup accelerate config, e.g. use multi-gpu ddp, fp16
|
59 |
# will be to: ~/.cache/huggingface/accelerate/default_config.yaml
|
60 |
accelerate config
|
61 |
+
accelerate launch train.py
|
62 |
```
|
63 |
An initial guidance on Finetuning [#57](https://github.com/SWivid/F5-TTS/discussions/57).
|
64 |
|
65 |
## Inference
|
66 |
|
67 |
+
To run inference with pretrained models, download the checkpoints from [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS), or automatically downloaded with `inference-cli` and `gradio_app`.
|
68 |
|
69 |
+
Currently support 30s for a single generation, which is the **TOTAL** length of prompt audio and the generated. Batch inference with chunks is supported by `inference-cli` and `gradio_app`.
|
70 |
- To avoid possible inference failures, make sure you have seen through the following instructions.
|
71 |
+
- A longer prompt audio allows shorter generated output. The part longer than 30s cannot be generated properly. Consider using a prompt audio <15s.
|
72 |
- Uppercased letters will be uttered letter by letter, so use lowercased letters for normal words.
|
73 |
- Add some spaces (blank: " ") or punctuations (e.g. "," ".") to explicitly introduce some pauses. If first few words skipped in code-switched generation (cuz different speed with different languages), this might help.
|
74 |
|
75 |
+
### CLI Inference
|
76 |
|
77 |
+
Either you can specify everything in `inference-cli.toml` or override with flags. Leave `--ref_text ""` will have ASR model transcribe the reference audio automatically (use extra GPU memory). If encounter network error, consider use local ckpt, just set `ckpt_path` in `inference-cli.py`
|
78 |
|
79 |
```bash
|
80 |
+
python inference-cli.py --model "F5-TTS" --ref_audio "tests/ref_audio/test_en_1_ref_short.wav" --ref_text "Some call me nature, others call me mother nature." --gen_text "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
python inference-cli.py --model "E2-TTS" --ref_audio "tests/ref_audio/test_zh_1_ref_short.wav" --ref_text "对,这就是我,万人敬仰的太乙真人。" --gen_text "突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:\"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?\""
|
|
|
83 |
```
|
84 |
|
85 |
### Gradio App
|
|
|
92 |
pip install -r requirements_gradio.txt
|
93 |
```
|
94 |
|
95 |
+
After installing the dependencies, launch the app (will load ckpt from Huggingface, you may set `ckpt_path` to local file in `gradio_app.py`). Currently load ASR model, F5-TTS and E2 TTS all in once, thus use more GPU memory than `inference-cli`.
|
96 |
|
97 |
```bash
|
98 |
python gradio_app.py
|
|
|
110 |
python gradio_app.py --share
|
111 |
```
|
112 |
|
113 |
+
### Speech Editing
|
114 |
+
|
115 |
+
To test speech editing capabilities, use the following command.
|
116 |
+
|
117 |
+
```bash
|
118 |
+
python speech_edit.py
|
119 |
+
```
|
120 |
+
|
121 |
## Evaluation
|
122 |
|
123 |
### Prepare Test Datasets
|
|
|
125 |
1. Seed-TTS test set: Download from [seed-tts-eval](https://github.com/BytedanceSpeech/seed-tts-eval).
|
126 |
2. LibriSpeech test-clean: Download from [OpenSLR](http://www.openslr.org/12/).
|
127 |
3. Unzip the downloaded datasets and place them in the data/ directory.
|
128 |
+
4. Update the path for the test-clean data in `scripts/eval_infer_batch.py`
|
129 |
5. Our filtered LibriSpeech-PC 4-10s subset is already under data/ in this repo
|
130 |
|
131 |
### Batch Inference for Test Set
|
|
|
135 |
```bash
|
136 |
# batch inference for evaluations
|
137 |
accelerate config # if not set before
|
138 |
+
bash scripts/eval_infer_batch.sh
|
139 |
```
|
140 |
|
141 |
### Download Evaluation Model Checkpoints
|
inference-cli.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import os
|
2 |
import re
|
3 |
import torch
|
4 |
import torchaudio
|
@@ -16,10 +15,8 @@ from model.utils import (
|
|
16 |
save_spectrogram,
|
17 |
)
|
18 |
from transformers import pipeline
|
19 |
-
import librosa
|
20 |
-
import click
|
21 |
import soundfile as sf
|
22 |
-
import
|
23 |
import argparse
|
24 |
import tqdm
|
25 |
from pathlib import Path
|
@@ -42,19 +39,19 @@ parser.add_argument(
|
|
42 |
)
|
43 |
parser.add_argument(
|
44 |
"-r",
|
45 |
-
"--
|
46 |
type=str,
|
47 |
help="Reference audio file < 15 seconds."
|
48 |
)
|
49 |
parser.add_argument(
|
50 |
"-s",
|
51 |
-
"--
|
52 |
type=str,
|
53 |
help="Subtitle for the reference audio."
|
54 |
)
|
55 |
parser.add_argument(
|
56 |
"-t",
|
57 |
-
"--
|
58 |
type=str,
|
59 |
help="Text to generate.",
|
60 |
)
|
@@ -70,11 +67,11 @@ parser.add_argument(
|
|
70 |
)
|
71 |
args = parser.parse_args()
|
72 |
|
73 |
-
config =
|
74 |
|
75 |
-
ref_audio = args.
|
76 |
-
ref_text = args.
|
77 |
-
gen_text = args.
|
78 |
output_dir = args.output_dir if args.output_dir else config["output_dir"]
|
79 |
exp_name = args.model if args.model else config["model"]
|
80 |
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
|
@@ -100,13 +97,6 @@ device = (
|
|
100 |
|
101 |
print(f"Using {device} device")
|
102 |
|
103 |
-
pipe = pipeline(
|
104 |
-
"automatic-speech-recognition",
|
105 |
-
model="openai/whisper-large-v3-turbo",
|
106 |
-
torch_dtype=torch.float16,
|
107 |
-
device=device,
|
108 |
-
)
|
109 |
-
|
110 |
# --------------------- Settings -------------------- #
|
111 |
|
112 |
target_sample_rate = 24000
|
@@ -151,13 +141,6 @@ F5TTS_model_cfg = dict(
|
|
151 |
)
|
152 |
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
153 |
|
154 |
-
F5TTS_ema_model = load_model(
|
155 |
-
"F5TTS_Base", DiT, F5TTS_model_cfg, 1200000
|
156 |
-
)
|
157 |
-
E2TTS_ema_model = load_model(
|
158 |
-
"E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000
|
159 |
-
)
|
160 |
-
|
161 |
def split_text_into_batches(text, max_chars=200, split_words=SPLIT_WORDS):
|
162 |
if len(text.encode('utf-8')) <= max_chars:
|
163 |
return [text]
|
@@ -256,9 +239,9 @@ def split_text_into_batches(text, max_chars=200, split_words=SPLIT_WORDS):
|
|
256 |
|
257 |
def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence):
|
258 |
if exp_name == "F5-TTS":
|
259 |
-
ema_model =
|
260 |
elif exp_name == "E2-TTS":
|
261 |
-
ema_model =
|
262 |
|
263 |
audio, sr = torchaudio.load(ref_audio)
|
264 |
if audio.shape[0] > 1:
|
@@ -363,6 +346,12 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, custom_s
|
|
363 |
|
364 |
if not ref_text.strip():
|
365 |
print("No reference text provided, transcribing reference audio...")
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
ref_text = pipe(
|
367 |
ref_audio,
|
368 |
chunk_length_s=30,
|
|
|
|
|
1 |
import re
|
2 |
import torch
|
3 |
import torchaudio
|
|
|
15 |
save_spectrogram,
|
16 |
)
|
17 |
from transformers import pipeline
|
|
|
|
|
18 |
import soundfile as sf
|
19 |
+
import tomli
|
20 |
import argparse
|
21 |
import tqdm
|
22 |
from pathlib import Path
|
|
|
39 |
)
|
40 |
parser.add_argument(
|
41 |
"-r",
|
42 |
+
"--ref_audio",
|
43 |
type=str,
|
44 |
help="Reference audio file < 15 seconds."
|
45 |
)
|
46 |
parser.add_argument(
|
47 |
"-s",
|
48 |
+
"--ref_text",
|
49 |
type=str,
|
50 |
help="Subtitle for the reference audio."
|
51 |
)
|
52 |
parser.add_argument(
|
53 |
"-t",
|
54 |
+
"--gen_text",
|
55 |
type=str,
|
56 |
help="Text to generate.",
|
57 |
)
|
|
|
67 |
)
|
68 |
args = parser.parse_args()
|
69 |
|
70 |
+
config = tomli.load(open(args.config, "rb"))
|
71 |
|
72 |
+
ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
|
73 |
+
ref_text = args.ref_text if args.ref_text else config["ref_text"]
|
74 |
+
gen_text = args.gen_text if args.gen_text else config["gen_text"]
|
75 |
output_dir = args.output_dir if args.output_dir else config["output_dir"]
|
76 |
exp_name = args.model if args.model else config["model"]
|
77 |
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
|
|
|
97 |
|
98 |
print(f"Using {device} device")
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
# --------------------- Settings -------------------- #
|
101 |
|
102 |
target_sample_rate = 24000
|
|
|
141 |
)
|
142 |
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
def split_text_into_batches(text, max_chars=200, split_words=SPLIT_WORDS):
|
145 |
if len(text.encode('utf-8')) <= max_chars:
|
146 |
return [text]
|
|
|
239 |
|
240 |
def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence):
|
241 |
if exp_name == "F5-TTS":
|
242 |
+
ema_model = load_model("F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
|
243 |
elif exp_name == "E2-TTS":
|
244 |
+
ema_model = load_model("E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
|
245 |
|
246 |
audio, sr = torchaudio.load(ref_audio)
|
247 |
if audio.shape[0] > 1:
|
|
|
346 |
|
347 |
if not ref_text.strip():
|
348 |
print("No reference text provided, transcribing reference audio...")
|
349 |
+
pipe = pipeline(
|
350 |
+
"automatic-speech-recognition",
|
351 |
+
model="openai/whisper-large-v3-turbo",
|
352 |
+
torch_dtype=torch.float16,
|
353 |
+
device=device,
|
354 |
+
)
|
355 |
ref_text = pipe(
|
356 |
ref_audio,
|
357 |
chunk_length_s=30,
|
inference-cli.toml
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
# F5-TTS | E2-TTS
|
2 |
model = "F5-TTS"
|
3 |
-
|
4 |
# If an empty "", transcribes the reference audio automatically.
|
5 |
-
|
6 |
-
|
7 |
remove_silence = true
|
8 |
output_dir = "tests"
|
|
|
1 |
# F5-TTS | E2-TTS
|
2 |
model = "F5-TTS"
|
3 |
+
ref_audio = "tests/ref_audio/test_en_1_ref_short.wav"
|
4 |
# If an empty "", transcribes the reference audio automatically.
|
5 |
+
ref_text = "Some call me nature, others call me mother nature."
|
6 |
+
gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."
|
7 |
remove_silence = true
|
8 |
output_dir = "tests"
|
model/dataset.py
CHANGED
@@ -188,7 +188,7 @@ def load_dataset(
|
|
188 |
dataset_type: str = "CustomDataset",
|
189 |
audio_type: str = "raw",
|
190 |
mel_spec_kwargs: dict = dict()
|
191 |
-
) -> CustomDataset
|
192 |
|
193 |
print("Loading dataset ...")
|
194 |
|
|
|
188 |
dataset_type: str = "CustomDataset",
|
189 |
audio_type: str = "raw",
|
190 |
mel_spec_kwargs: dict = dict()
|
191 |
+
) -> CustomDataset:
|
192 |
|
193 |
print("Loading dataset ...")
|
194 |
|
requirements.txt
CHANGED
@@ -1,16 +1,21 @@
|
|
1 |
accelerate>=0.33.0
|
|
|
|
|
2 |
datasets
|
3 |
einops>=0.8.0
|
4 |
einx>=0.3.0
|
5 |
ema_pytorch>=0.5.2
|
6 |
faster_whisper
|
7 |
funasr
|
|
|
8 |
jieba
|
9 |
jiwer
|
10 |
librosa
|
11 |
matplotlib
|
|
|
12 |
pypinyin
|
13 |
safetensors
|
|
|
14 |
# torch>=2.0
|
15 |
# torchaudio>=2.3.0
|
16 |
torchdiffeq
|
@@ -20,6 +25,4 @@ vocos
|
|
20 |
wandb
|
21 |
x_transformers>=1.31.14
|
22 |
zhconv
|
23 |
-
zhon
|
24 |
-
pydub
|
25 |
-
cached_path
|
|
|
1 |
accelerate>=0.33.0
|
2 |
+
cached_path
|
3 |
+
click
|
4 |
datasets
|
5 |
einops>=0.8.0
|
6 |
einx>=0.3.0
|
7 |
ema_pytorch>=0.5.2
|
8 |
faster_whisper
|
9 |
funasr
|
10 |
+
gradio
|
11 |
jieba
|
12 |
jiwer
|
13 |
librosa
|
14 |
matplotlib
|
15 |
+
pydub
|
16 |
pypinyin
|
17 |
safetensors
|
18 |
+
soundfile
|
19 |
# torch>=2.0
|
20 |
# torchaudio>=2.3.0
|
21 |
torchdiffeq
|
|
|
25 |
wandb
|
26 |
x_transformers>=1.31.14
|
27 |
zhconv
|
28 |
+
zhon
|
|
|
|
requirements_gradio.txt
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
cached_path
|
2 |
-
click
|
3 |
-
gradio
|
4 |
-
pydub
|
5 |
-
soundfile
|
|
|
|
|
|
|
|
|
|
|
|
test_infer_batch.py → scripts/eval_infer_batch.py
RENAMED
@@ -1,4 +1,6 @@
|
|
1 |
-
import os
|
|
|
|
|
2 |
import time
|
3 |
import random
|
4 |
from tqdm import tqdm
|
|
|
1 |
+
import sys, os
|
2 |
+
sys.path.append(os.getcwd())
|
3 |
+
|
4 |
import time
|
5 |
import random
|
6 |
from tqdm import tqdm
|
scripts/eval_infer_batch.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# e.g. F5-TTS, 16 NFE
|
4 |
+
accelerate launch scripts/eval_infer_batch.py -n "F5TTS_Base" -t "seedtts_test_zh" -nfe 16
|
5 |
+
accelerate launch scripts/eval_infer_batch.py -n "F5TTS_Base" -t "seedtts_test_en" -nfe 16
|
6 |
+
accelerate launch scripts/eval_infer_batch.py -n "F5TTS_Base" -t "ls_pc_test_clean" -nfe 16
|
7 |
+
|
8 |
+
# e.g. Vanilla E2 TTS, 32 NFE
|
9 |
+
accelerate launch scripts/eval_infer_batch.py -n "E2TTS_Base" -t "seedtts_test_zh" -o "midpoint" -ss 0
|
10 |
+
accelerate launch scripts/eval_infer_batch.py -n "E2TTS_Base" -t "seedtts_test_en" -o "midpoint" -ss 0
|
11 |
+
accelerate launch scripts/eval_infer_batch.py -n "E2TTS_Base" -t "ls_pc_test_clean" -o "midpoint" -ss 0
|
12 |
+
|
13 |
+
# etc.
|
test_infer_single_edit.py → speech_edit.py
RENAMED
File without changes
|
test_infer_batch.sh
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
|
3 |
-
# e.g. F5-TTS, 16 NFE
|
4 |
-
accelerate launch test_infer_batch.py -n "F5TTS_Base" -t "seedtts_test_zh" -nfe 16
|
5 |
-
accelerate launch test_infer_batch.py -n "F5TTS_Base" -t "seedtts_test_en" -nfe 16
|
6 |
-
accelerate launch test_infer_batch.py -n "F5TTS_Base" -t "ls_pc_test_clean" -nfe 16
|
7 |
-
|
8 |
-
# e.g. Vanilla E2 TTS, 32 NFE
|
9 |
-
accelerate launch test_infer_batch.py -n "E2TTS_Base" -t "seedtts_test_zh" -o "midpoint" -ss 0
|
10 |
-
accelerate launch test_infer_batch.py -n "E2TTS_Base" -t "seedtts_test_en" -o "midpoint" -ss 0
|
11 |
-
accelerate launch test_infer_batch.py -n "E2TTS_Base" -t "ls_pc_test_clean" -o "midpoint" -ss 0
|
12 |
-
|
13 |
-
# etc.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_infer_single.py
DELETED
@@ -1,161 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torchaudio
|
6 |
-
from einops import rearrange
|
7 |
-
from vocos import Vocos
|
8 |
-
|
9 |
-
from model import CFM, UNetT, DiT, MMDiT
|
10 |
-
from model.utils import (
|
11 |
-
load_checkpoint,
|
12 |
-
get_tokenizer,
|
13 |
-
convert_char_to_pinyin,
|
14 |
-
save_spectrogram,
|
15 |
-
)
|
16 |
-
|
17 |
-
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
18 |
-
|
19 |
-
|
20 |
-
# --------------------- Dataset Settings -------------------- #
|
21 |
-
|
22 |
-
target_sample_rate = 24000
|
23 |
-
n_mel_channels = 100
|
24 |
-
hop_length = 256
|
25 |
-
target_rms = 0.1
|
26 |
-
|
27 |
-
tokenizer = "pinyin"
|
28 |
-
dataset_name = "Emilia_ZH_EN"
|
29 |
-
|
30 |
-
|
31 |
-
# ---------------------- infer setting ---------------------- #
|
32 |
-
|
33 |
-
seed = None # int | None
|
34 |
-
|
35 |
-
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
|
36 |
-
ckpt_step = 1200000
|
37 |
-
|
38 |
-
nfe_step = 32 # 16, 32
|
39 |
-
cfg_strength = 2.
|
40 |
-
ode_method = 'euler' # euler | midpoint
|
41 |
-
sway_sampling_coef = -1.
|
42 |
-
speed = 1.
|
43 |
-
fix_duration = 27 # None (will linear estimate. if code-switched, consider fix) | float (total in seconds, include ref audio)
|
44 |
-
|
45 |
-
if exp_name == "F5TTS_Base":
|
46 |
-
model_cls = DiT
|
47 |
-
model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4)
|
48 |
-
|
49 |
-
elif exp_name == "E2TTS_Base":
|
50 |
-
model_cls = UNetT
|
51 |
-
model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4)
|
52 |
-
|
53 |
-
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt"
|
54 |
-
output_dir = "tests"
|
55 |
-
|
56 |
-
ref_audio = "tests/ref_audio/test_en_1_ref_short.wav"
|
57 |
-
ref_text = "Some call me nature, others call me mother nature."
|
58 |
-
gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."
|
59 |
-
|
60 |
-
# ref_audio = "tests/ref_audio/test_zh_1_ref_short.wav"
|
61 |
-
# ref_text = "对,这就是我,万人敬仰的太乙真人。"
|
62 |
-
# gen_text = "突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:\"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?\""
|
63 |
-
|
64 |
-
|
65 |
-
# -------------------------------------------------#
|
66 |
-
|
67 |
-
use_ema = True
|
68 |
-
|
69 |
-
if not os.path.exists(output_dir):
|
70 |
-
os.makedirs(output_dir)
|
71 |
-
|
72 |
-
# Vocoder model
|
73 |
-
local = False
|
74 |
-
if local:
|
75 |
-
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
76 |
-
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
|
77 |
-
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device)
|
78 |
-
vocos.load_state_dict(state_dict)
|
79 |
-
vocos.eval()
|
80 |
-
else:
|
81 |
-
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
82 |
-
|
83 |
-
# Tokenizer
|
84 |
-
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
85 |
-
|
86 |
-
# Model
|
87 |
-
model = CFM(
|
88 |
-
transformer = model_cls(
|
89 |
-
**model_cfg,
|
90 |
-
text_num_embeds = vocab_size,
|
91 |
-
mel_dim = n_mel_channels
|
92 |
-
),
|
93 |
-
mel_spec_kwargs = dict(
|
94 |
-
target_sample_rate = target_sample_rate,
|
95 |
-
n_mel_channels = n_mel_channels,
|
96 |
-
hop_length = hop_length,
|
97 |
-
),
|
98 |
-
odeint_kwargs = dict(
|
99 |
-
method = ode_method,
|
100 |
-
),
|
101 |
-
vocab_char_map = vocab_char_map,
|
102 |
-
).to(device)
|
103 |
-
|
104 |
-
model = load_checkpoint(model, ckpt_path, device, use_ema = use_ema)
|
105 |
-
|
106 |
-
# Audio
|
107 |
-
audio, sr = torchaudio.load(ref_audio)
|
108 |
-
if audio.shape[0] > 1:
|
109 |
-
audio = torch.mean(audio, dim=0, keepdim=True)
|
110 |
-
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
111 |
-
if rms < target_rms:
|
112 |
-
audio = audio * target_rms / rms
|
113 |
-
if sr != target_sample_rate:
|
114 |
-
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
115 |
-
audio = resampler(audio)
|
116 |
-
audio = audio.to(device)
|
117 |
-
|
118 |
-
# Text
|
119 |
-
if len(ref_text[-1].encode('utf-8')) == 1:
|
120 |
-
ref_text = ref_text + " "
|
121 |
-
text_list = [ref_text + gen_text]
|
122 |
-
if tokenizer == "pinyin":
|
123 |
-
final_text_list = convert_char_to_pinyin(text_list)
|
124 |
-
else:
|
125 |
-
final_text_list = [text_list]
|
126 |
-
print(f"text : {text_list}")
|
127 |
-
print(f"pinyin: {final_text_list}")
|
128 |
-
|
129 |
-
# Duration
|
130 |
-
ref_audio_len = audio.shape[-1] // hop_length
|
131 |
-
if fix_duration is not None:
|
132 |
-
duration = int(fix_duration * target_sample_rate / hop_length)
|
133 |
-
else: # simple linear scale calcul
|
134 |
-
zh_pause_punc = r"。,、;:?!"
|
135 |
-
ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
|
136 |
-
gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
|
137 |
-
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
138 |
-
|
139 |
-
# Inference
|
140 |
-
with torch.inference_mode():
|
141 |
-
generated, trajectory = model.sample(
|
142 |
-
cond = audio,
|
143 |
-
text = final_text_list,
|
144 |
-
duration = duration,
|
145 |
-
steps = nfe_step,
|
146 |
-
cfg_strength = cfg_strength,
|
147 |
-
sway_sampling_coef = sway_sampling_coef,
|
148 |
-
seed = seed,
|
149 |
-
)
|
150 |
-
print(f"Generated mel: {generated.shape}")
|
151 |
-
|
152 |
-
# Final result
|
153 |
-
generated = generated[:, ref_audio_len:, :]
|
154 |
-
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
|
155 |
-
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
156 |
-
if rms < target_rms:
|
157 |
-
generated_wave = generated_wave * rms / target_rms
|
158 |
-
|
159 |
-
save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/test_single.png")
|
160 |
-
torchaudio.save(f"{output_dir}/test_single.wav", generated_wave, target_sample_rate)
|
161 |
-
print(f"Generated wav: {generated_wave.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_train.py → train.py
RENAMED
File without changes
|