Batch cfg DiT forward
Browse files- src/f5_tts/model/backbones/dit.py +29 -11
- src/f5_tts/model/cfm.py +21 -5
src/f5_tts/model/backbones/dit.py
CHANGED
@@ -185,6 +185,20 @@ class DiT(nn.Module):
|
|
185 |
def clear_cache(self):
|
186 |
self.text_cond, self.text_uncond = None, None
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
def forward(
|
189 |
self,
|
190 |
x: float["b n d"], # nosied input audio # noqa: F722
|
@@ -193,6 +207,7 @@ class DiT(nn.Module):
|
|
193 |
time: float["b"] | float[""], # time step # noqa: F821 F722
|
194 |
drop_audio_cond, # cfg for cond audio
|
195 |
drop_text, # cfg for text
|
|
|
196 |
mask: bool["b n"] | None = None, # noqa: F722
|
197 |
cache=False,
|
198 |
):
|
@@ -202,18 +217,21 @@ class DiT(nn.Module):
|
|
202 |
|
203 |
# t: conditioning time, text: text, x: noised audio + cond audio + text
|
204 |
t = self.time_embed(time)
|
205 |
-
if
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
214 |
else:
|
215 |
-
text_embed = self.
|
216 |
-
|
217 |
|
218 |
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
219 |
|
|
|
185 |
def clear_cache(self):
|
186 |
self.text_cond, self.text_uncond = None, None
|
187 |
|
188 |
+
def get_text_embed(self, text, seq_len, drop_text, cache):
|
189 |
+
if cache:
|
190 |
+
if drop_text:
|
191 |
+
if self.text_uncond is None:
|
192 |
+
self.text_uncond = self.text_embed(text, seq_len, drop_text=True)
|
193 |
+
text_embed = self.text_uncond
|
194 |
+
else:
|
195 |
+
if self.text_cond is None:
|
196 |
+
self.text_cond = self.text_embed(text, seq_len, drop_text=False)
|
197 |
+
text_embed = self.text_cond
|
198 |
+
else:
|
199 |
+
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
200 |
+
return text_embed
|
201 |
+
|
202 |
def forward(
|
203 |
self,
|
204 |
x: float["b n d"], # nosied input audio # noqa: F722
|
|
|
207 |
time: float["b"] | float[""], # time step # noqa: F821 F722
|
208 |
drop_audio_cond, # cfg for cond audio
|
209 |
drop_text, # cfg for text
|
210 |
+
batch_cfg=False, # batch cfg compute
|
211 |
mask: bool["b n"] | None = None, # noqa: F722
|
212 |
cache=False,
|
213 |
):
|
|
|
217 |
|
218 |
# t: conditioning time, text: text, x: noised audio + cond audio + text
|
219 |
t = self.time_embed(time)
|
220 |
+
if batch_cfg:
|
221 |
+
text_embed_cond = self.get_text_embed(
|
222 |
+
text, seq_len, drop_text=False, cache=cache
|
223 |
+
)
|
224 |
+
text_embed_uncond = self.get_text_embed(
|
225 |
+
text, seq_len, drop_text=True, cache=cache
|
226 |
+
)
|
227 |
+
x_cond = self.input_embed(x, cond, text_embed_cond, drop_audio_cond=False)
|
228 |
+
x_uncond = self.input_embed(
|
229 |
+
x, cond, text_embed_uncond, drop_audio_cond=True
|
230 |
+
)
|
231 |
+
x = torch.cat((x_cond, x_uncond), dim=0)
|
232 |
else:
|
233 |
+
text_embed = self.get_text_embed(text, seq_len, drop_text, cache)
|
234 |
+
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
235 |
|
236 |
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
237 |
|
src/f5_tts/model/cfm.py
CHANGED
@@ -163,15 +163,31 @@ class CFM(nn.Module):
|
|
163 |
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
|
164 |
|
165 |
# predict flow
|
166 |
-
pred = self.transformer(
|
167 |
-
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False, cache=True
|
168 |
-
)
|
169 |
if cfg_strength < 1e-5:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
return pred
|
171 |
|
172 |
-
|
173 |
-
x=x,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
)
|
|
|
175 |
return pred + (pred - null_pred) * cfg_strength
|
176 |
|
177 |
# noise input
|
|
|
163 |
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
|
164 |
|
165 |
# predict flow
|
|
|
|
|
|
|
166 |
if cfg_strength < 1e-5:
|
167 |
+
pred = self.transformer(
|
168 |
+
x=x,
|
169 |
+
cond=step_cond,
|
170 |
+
text=text,
|
171 |
+
time=t,
|
172 |
+
mask=mask,
|
173 |
+
drop_audio_cond=False,
|
174 |
+
drop_text=False,
|
175 |
+
cache=True,
|
176 |
+
)
|
177 |
return pred
|
178 |
|
179 |
+
pred_and_null = self.transformer(
|
180 |
+
x=x,
|
181 |
+
cond=step_cond,
|
182 |
+
text=text,
|
183 |
+
time=t,
|
184 |
+
mask=mask,
|
185 |
+
drop_audio_cond=False,
|
186 |
+
drop_text=False,
|
187 |
+
batch_cfg=True,
|
188 |
+
cache=True,
|
189 |
)
|
190 |
+
pred, null_pred = torch.chunk(pred_and_null, 2, dim=0)
|
191 |
return pred + (pred - null_pred) * cfg_strength
|
192 |
|
193 |
# noise input
|