File size: 5,274 Bytes
55dc5cf
 
 
 
 
 
 
 
17ae9a6
55dc5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590959c
0bf2396
 
55dc5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc9207
55dc5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Подключение клиентов
# - - - - - - - - - - - - - -
from huggingface_hub import InferenceClient
from together import Together

# Подключение библиотек
# - - - - - - - - - - - - - -
import gradio as gr
import os
import json


#============================
#============================


# Список доступных моделей
# - - - - - - - - - - - - - -
models = {
    "together": [
        "deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free",
        "meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
    ],
    "huggingface": [
        "google/gemma-3-27b-it",
        "Qwen/QwQ-32B",
        "Qwen/QwQ-32B-Preview",
        "mistralai/Mistral-Small-24B-Instruct-2501",
        "deepseek-ai/deepseek-llm-67b-chat",
        "mistralai/Mixtral-8x22B-Instruct-v0.1",
        "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
        "google/gemma-2-9b-it",
        "google/gemma-2-27b-it"
    ]
}


#============================
#============================


# Функции для работы с сообщениями
# - - - - - - - - - - - - - -
def add_message(role, content, messages):
    messages.append({"role": role, "content": content})
    return messages, len(messages), str(messages)

def clear_messages(messages):
    return [], 0, "[]"

def show_messages(messages):
    return str(messages)

def get_messages_api(messages):
    return json.dumps(messages, indent=4)

def run_huggingface_model(model, messages, max_tokens, temperature, top_p):
    client = InferenceClient(model)
    response = client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=False,
        temperature=temperature,
        top_p=top_p,
    )
    return response.choices[0].message.content

def run_together_model(model, messages, max_tokens, temperature, top_p):
    client = Together()
    response = client.chat.completions.create(
        model=model,
        messages=messages,
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
    )
    return response.choices[0].message.content


#============================
#============================


# Создаем интерфейс с вкладками
demo = gr.Blocks()

with demo:
    gr.Markdown("# Chat Interface")
    
    # Вкладки для Together и HuggingFace
    with gr.Tabs():
        with gr.Tab("Together"):
            together_model_input = gr.Radio(
                label="Select a Together model",
                choices=models["together"],
                value=models["together"][0],
            )
            together_run_button = gr.Button("Run Together")
        
        with gr.Tab("HuggingFace"):
            huggingface_model_input = gr.Radio(
                label="Select a HuggingFace model",
                choices=models["huggingface"],
                value=models["huggingface"][0],
            )
            huggingface_run_button = gr.Button("Run HuggingFace")
    
    # Общие элементы интерфейса
    role_input = gr.Dropdown(
        label="Role",
        choices=["system", "user", "assistant"],  # Список ролей
        value="user"  # Значение по умолчанию
    )
    content_input = gr.Textbox(label="Content")
    messages_state = gr.State(value=[])
    messages_output = gr.Textbox(label="Messages", value="[]")
    count_output = gr.Number(label="Count", value=0)
    response_output = gr.Textbox(label="Response")
    messages_api_output = gr.Textbox(label="Messages API")

    add_button = gr.Button("Add")
    clear_button = gr.Button("Clear")
    show_button = gr.Button("Show messages")
    get_api_button = gr.Button("Get messages API")

    max_tokens_slider = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
    temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
    top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")

    # Обработчики событий для кнопок
    add_button.click(
        add_message,
        inputs=[role_input, content_input, messages_state],
        outputs=[messages_state, count_output, messages_output],
    )

    clear_button.click(
        clear_messages,
        inputs=[messages_state],
        outputs=[messages_state, count_output, messages_output],
    )

    show_button.click(
        show_messages,
        inputs=[messages_state],
        outputs=[messages_output],
    )

    get_api_button.click(
        get_messages_api,
        inputs=[messages_state],
        outputs=[messages_api_output],
    )

    # Обработчики событий для кнопок "Run"
    together_run_button.click(
        run_together_model,
        inputs=[together_model_input, messages_state, max_tokens_slider, temperature_slider, top_p_slider],
        outputs=[response_output],
    )

    huggingface_run_button.click(
        run_huggingface_model,
        inputs=[huggingface_model_input, messages_state, max_tokens_slider, temperature_slider, top_p_slider],
        outputs=[response_output],
    )


#============================
#============================


if __name__ == "__main__":
    demo.launch()