susanesho commited on
Commit
863cce8
·
1 Parent(s): 9142c2d

update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -15,15 +15,14 @@ from transformers import (
15
 
16
  # model_path = "EmotiScan/amazon-comments-bert" # To use your model, on line 55, you'll have to change i to i+1
17
  # model_path = "nlptown/bert-base-multilingual-uncased-sentiment"
18
- model_path = "EmotiScan/amazon-comments-bert"
19
 
20
  tokenizer = AutoTokenizer.from_pretrained(model_path)
21
  model = AutoModelForSequenceClassification.from_pretrained(model_path)
22
 
23
 
24
- description = f"""# <h2 style="text-align: center;"> EmotiScan Amazon Products Review</h2>
25
- <p style="text-align: center;font-size:15px;"> (Placeholder description) Analysing Amazon product reviews...
26
- Input a single review to predict sentiment or multiple from a text file.</p>
27
  """
28
 
29
  sample_reviews = [
@@ -52,7 +51,7 @@ def get_sentiments(text):
52
  logits = model(**encoded_input).logits
53
 
54
  logits_list = logits[0].tolist()
55
- logits_labels = [model.config.id2label[i + 1]
56
  for i in range(0, len(logits_list))]
57
 
58
  probs = softmax(logits_list)
 
15
 
16
  # model_path = "EmotiScan/amazon-comments-bert" # To use your model, on line 55, you'll have to change i to i+1
17
  # model_path = "nlptown/bert-base-multilingual-uncased-sentiment"
18
+ model_path = "Mofe/emotiscan_model_2"
19
 
20
  tokenizer = AutoTokenizer.from_pretrained(model_path)
21
  model = AutoModelForSequenceClassification.from_pretrained(model_path)
22
 
23
 
24
+ description = f"""# <h2 style="text-align: center;"> Opinion Orbit Amazon Products Review</h2>
25
+ <p style="text-align: center;font-size:15px;"> Input a single review to predict sentiment or multiple from a text file.</p>
 
26
  """
27
 
28
  sample_reviews = [
 
51
  logits = model(**encoded_input).logits
52
 
53
  logits_list = logits[0].tolist()
54
+ logits_labels = [model.config.id2label[i]
55
  for i in range(0, len(logits_list))]
56
 
57
  probs = softmax(logits_list)