Spaces:
Sleeping
Sleeping
update app.py
Browse files
app.py
CHANGED
@@ -15,15 +15,14 @@ from transformers import (
|
|
15 |
|
16 |
# model_path = "EmotiScan/amazon-comments-bert" # To use your model, on line 55, you'll have to change i to i+1
|
17 |
# model_path = "nlptown/bert-base-multilingual-uncased-sentiment"
|
18 |
-
model_path = "
|
19 |
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
21 |
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
22 |
|
23 |
|
24 |
-
description = f"""# <h2 style="text-align: center;">
|
25 |
-
<p style="text-align: center;font-size:15px;">
|
26 |
-
Input a single review to predict sentiment or multiple from a text file.</p>
|
27 |
"""
|
28 |
|
29 |
sample_reviews = [
|
@@ -52,7 +51,7 @@ def get_sentiments(text):
|
|
52 |
logits = model(**encoded_input).logits
|
53 |
|
54 |
logits_list = logits[0].tolist()
|
55 |
-
logits_labels = [model.config.id2label[i
|
56 |
for i in range(0, len(logits_list))]
|
57 |
|
58 |
probs = softmax(logits_list)
|
|
|
15 |
|
16 |
# model_path = "EmotiScan/amazon-comments-bert" # To use your model, on line 55, you'll have to change i to i+1
|
17 |
# model_path = "nlptown/bert-base-multilingual-uncased-sentiment"
|
18 |
+
model_path = "Mofe/emotiscan_model_2"
|
19 |
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
21 |
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
22 |
|
23 |
|
24 |
+
description = f"""# <h2 style="text-align: center;"> Opinion Orbit Amazon Products Review</h2>
|
25 |
+
<p style="text-align: center;font-size:15px;"> Input a single review to predict sentiment or multiple from a text file.</p>
|
|
|
26 |
"""
|
27 |
|
28 |
sample_reviews = [
|
|
|
51 |
logits = model(**encoded_input).logits
|
52 |
|
53 |
logits_list = logits[0].tolist()
|
54 |
+
logits_labels = [model.config.id2label[i]
|
55 |
for i in range(0, len(logits_list))]
|
56 |
|
57 |
probs = softmax(logits_list)
|