Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,38 @@
|
|
| 1 |
-
import
|
| 2 |
import requests
|
| 3 |
import Levenshtein
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
def
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
|
|
|
| 14 |
"""
|
| 15 |
-
Transcribes speech from an audio file using
|
| 16 |
Args:
|
| 17 |
-
|
| 18 |
Returns:
|
| 19 |
str: The transcription of the speech in the audio file.
|
| 20 |
"""
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
# Function to calculate Levenshtein similarity
|
| 27 |
def levenshtein_similarity(transcription1, transcription2):
|
| 28 |
"""
|
| 29 |
Calculate the Levenshtein similarity between two transcriptions.
|
|
@@ -37,99 +46,99 @@ def levenshtein_similarity(transcription1, transcription2):
|
|
| 37 |
max_len = max(len(transcription1), len(transcription2))
|
| 38 |
return 1 - distance / max_len # Normalize to get similarity score
|
| 39 |
|
| 40 |
-
|
| 41 |
-
def evaluate_audio_similarity(original_audio, user_audio):
|
| 42 |
"""
|
| 43 |
Compares the similarity between the transcription of an original audio file and a user's audio file.
|
| 44 |
Args:
|
| 45 |
-
|
| 46 |
-
|
| 47 |
Returns:
|
| 48 |
tuple: Transcriptions and Levenshtein similarity score.
|
| 49 |
"""
|
| 50 |
-
transcription_original = transcribe_audio_hf(
|
| 51 |
-
transcription_user = transcribe_audio_hf(
|
| 52 |
-
|
| 53 |
-
return transcription_original, transcription_user,
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
#
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import requests
|
| 3 |
import Levenshtein
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
import librosa
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 8 |
+
from audio_recorder_streamlit import audio_recorder
|
| 9 |
|
| 10 |
+
@st.cache_resource
|
| 11 |
+
def load_model():
|
| 12 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
|
| 13 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
| 14 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
| 15 |
+
return processor, model
|
| 16 |
|
| 17 |
+
processor, model = load_model()
|
| 18 |
+
|
| 19 |
+
def transcribe_audio_hf(audio_bytes):
|
| 20 |
"""
|
| 21 |
+
Transcribes speech from an audio file using a pretrained Wav2Vec2 model.
|
| 22 |
Args:
|
| 23 |
+
audio_bytes (bytes): Audio data in bytes.
|
| 24 |
Returns:
|
| 25 |
str: The transcription of the speech in the audio file.
|
| 26 |
"""
|
| 27 |
+
speech_array, sampling_rate = librosa.load(BytesIO(audio_bytes), sr=16000)
|
| 28 |
+
input_values = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True).input_values
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
logits = model(input_values).logits
|
| 31 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 32 |
+
transcription = processor.batch_decode(predicted_ids)[0].strip()
|
| 33 |
+
return transcription
|
| 34 |
+
|
| 35 |
|
|
|
|
| 36 |
def levenshtein_similarity(transcription1, transcription2):
|
| 37 |
"""
|
| 38 |
Calculate the Levenshtein similarity between two transcriptions.
|
|
|
|
| 46 |
max_len = max(len(transcription1), len(transcription2))
|
| 47 |
return 1 - distance / max_len # Normalize to get similarity score
|
| 48 |
|
| 49 |
+
def evaluate_audio_similarity(original_audio_bytes, user_audio_bytes):
|
|
|
|
| 50 |
"""
|
| 51 |
Compares the similarity between the transcription of an original audio file and a user's audio file.
|
| 52 |
Args:
|
| 53 |
+
original_audio_bytes (bytes): Bytes of the original audio file.
|
| 54 |
+
user_audio_bytes (bytes): Bytes of the user's audio file.
|
| 55 |
Returns:
|
| 56 |
tuple: Transcriptions and Levenshtein similarity score.
|
| 57 |
"""
|
| 58 |
+
transcription_original = transcribe_audio_hf(original_audio_bytes)
|
| 59 |
+
transcription_user = transcribe_audio_hf(user_audio_bytes)
|
| 60 |
+
similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user)
|
| 61 |
+
return transcription_original, transcription_user, similarity_score_levenshtein
|
| 62 |
+
|
| 63 |
+
st.title("Audio Transcription and Similarity Checker")
|
| 64 |
+
|
| 65 |
+
# Choose between upload or record
|
| 66 |
+
st.sidebar.header("Input Method")
|
| 67 |
+
input_method = st.sidebar.selectbox("Choose Input Method", ["Upload", "Record"])
|
| 68 |
+
|
| 69 |
+
original_audio_bytes = None
|
| 70 |
+
user_audio_bytes = None
|
| 71 |
+
|
| 72 |
+
if input_method == "Upload":
|
| 73 |
+
# Upload original audio file
|
| 74 |
+
original_audio = st.file_uploader("Upload Original Audio", type=["wav", "mp3"])
|
| 75 |
+
# Upload user audio file
|
| 76 |
+
user_audio = st.file_uploader("Upload User Audio", type=["wav", "mp3"])
|
| 77 |
+
|
| 78 |
+
if original_audio:
|
| 79 |
+
original_audio_bytes = original_audio.read()
|
| 80 |
+
st.audio(original_audio_bytes, format="audio/wav")
|
| 81 |
+
if user_audio:
|
| 82 |
+
user_audio_bytes = user_audio.read()
|
| 83 |
+
st.audio(user_audio_bytes, format="audio/wav")
|
| 84 |
+
|
| 85 |
+
# Add a button to perform the test
|
| 86 |
+
if original_audio_bytes and user_audio_bytes:
|
| 87 |
+
if st.button("Perform Testing"):
|
| 88 |
+
with st.spinner("Performing transcription and similarity testing..."):
|
| 89 |
+
transcription_original, transcription_user, similarity_score = evaluate_audio_similarity(original_audio_bytes, user_audio_bytes)
|
| 90 |
+
|
| 91 |
+
# Display results
|
| 92 |
+
st.markdown("---")
|
| 93 |
+
st.subheader("Transcriptions and Similarity Score")
|
| 94 |
+
st.write(f"**Original Transcription:** {transcription_original}")
|
| 95 |
+
st.write(f"**User Transcription:** {transcription_user}")
|
| 96 |
+
st.write(f"**Levenshtein Similarity Score:** {similarity_score:.2f}")
|
| 97 |
+
|
| 98 |
+
if similarity_score > 0.8: # Adjust the threshold as needed
|
| 99 |
+
st.success("The pronunciation is likely correct based on transcription similarity.")
|
| 100 |
+
else:
|
| 101 |
+
st.error("The pronunciation may be incorrect based on transcription similarity.")
|
| 102 |
+
|
| 103 |
+
elif input_method == "Record":
|
| 104 |
+
st.write("Record or Upload Original Audio")
|
| 105 |
+
original_audio_bytes = audio_recorder(key="original_audio_recorder")
|
| 106 |
+
|
| 107 |
+
if not original_audio_bytes:
|
| 108 |
+
original_audio = st.file_uploader("Or Upload Original Audio", type=["wav", "mp3"])
|
| 109 |
+
if original_audio:
|
| 110 |
+
original_audio_bytes = original_audio.read()
|
| 111 |
+
|
| 112 |
+
if original_audio_bytes:
|
| 113 |
+
with st.spinner("Processing original audio..."):
|
| 114 |
+
st.audio(original_audio_bytes, format="audio/wav")
|
| 115 |
+
|
| 116 |
+
st.write("Record or Upload User Audio")
|
| 117 |
+
user_audio_bytes = audio_recorder(key="user_audio_recorder")
|
| 118 |
+
|
| 119 |
+
if not user_audio_bytes:
|
| 120 |
+
user_audio = st.file_uploader("Or Upload User Audio", type=["wav", "mp3"])
|
| 121 |
+
if user_audio:
|
| 122 |
+
user_audio_bytes = user_audio.read()
|
| 123 |
+
|
| 124 |
+
if user_audio_bytes:
|
| 125 |
+
with st.spinner("Processing user audio..."):
|
| 126 |
+
st.audio(user_audio_bytes, format="audio/wav")
|
| 127 |
+
|
| 128 |
+
# Add a button to perform the test
|
| 129 |
+
if original_audio_bytes and user_audio_bytes:
|
| 130 |
+
if st.button("Perform Testing"):
|
| 131 |
+
with st.spinner("Performing transcription and similarity testing..."):
|
| 132 |
+
transcription_original, transcription_user, similarity_score = evaluate_audio_similarity(original_audio_bytes, user_audio_bytes)
|
| 133 |
+
|
| 134 |
+
# Display results
|
| 135 |
+
st.markdown("---")
|
| 136 |
+
st.subheader("Transcriptions and Similarity Score")
|
| 137 |
+
st.write(f"**Original Transcription:** {transcription_original}")
|
| 138 |
+
st.write(f"**User Transcription:** {transcription_user}")
|
| 139 |
+
st.write(f"**Levenshtein Similarity Score:** {similarity_score:.2f}")
|
| 140 |
+
|
| 141 |
+
if similarity_score > 0.8: # Adjust the threshold as needed
|
| 142 |
+
st.success("The pronunciation is likely correct based on transcription similarity.")
|
| 143 |
+
else:
|
| 144 |
+
st.error("The pronunciation may be incorrect based on transcription similarity.")
|