Spaces:
Paused
Paused
Commit
·
1bead67
1
Parent(s):
bb0a58d
Files added
Browse files
app.py
CHANGED
|
@@ -1,29 +1,23 @@
|
|
| 1 |
import os
|
| 2 |
-
# Append /usr/bin to PATH
|
| 3 |
-
os.environ["PATH"] += os.pathsep + "/usr/bin"
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
from flask import Flask, request, jsonify, render_template
|
| 8 |
-
import
|
| 9 |
-
import torch
|
| 10 |
-
import Levenshtein
|
| 11 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 12 |
-
from io import BytesIO
|
| 13 |
from flask_cors import CORS
|
| 14 |
-
from pydub import AudioSegment
|
|
|
|
|
|
|
| 15 |
|
|
|
|
| 16 |
AudioSegment.converter = "/usr/bin/ffmpeg"
|
| 17 |
AudioSegment.ffprobe = "/usr/bin/ffprobe"
|
| 18 |
|
|
|
|
| 19 |
os.environ['HF_HOME'] = '/tmp/.cache'
|
| 20 |
|
| 21 |
app = Flask(__name__)
|
| 22 |
CORS(app)
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
| 27 |
|
| 28 |
|
| 29 |
def convert_to_wav(audio_bytes):
|
|
@@ -39,19 +33,16 @@ def convert_to_wav(audio_bytes):
|
|
| 39 |
return None
|
| 40 |
|
| 41 |
|
| 42 |
-
def
|
| 43 |
-
"""Transcribes the audio using
|
| 44 |
-
wav_io = convert_to_wav(audio_bytes)
|
| 45 |
if wav_io is None:
|
| 46 |
raise Exception("Could not convert audio to WAV format")
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
| 53 |
-
transcription = processor.batch_decode(predicted_ids)[0].strip()
|
| 54 |
-
return transcription
|
| 55 |
|
| 56 |
|
| 57 |
def levenshtein_similarity(transcription1, transcription2):
|
|
@@ -74,8 +65,8 @@ def transcribe():
|
|
| 74 |
user_audio_bytes = user_audio.read()
|
| 75 |
|
| 76 |
try:
|
| 77 |
-
transcription_original =
|
| 78 |
-
transcription_user =
|
| 79 |
except Exception as e:
|
| 80 |
return jsonify({"error": str(e)}), 500
|
| 81 |
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from flask import Flask, request, jsonify, render_template
|
| 3 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from flask_cors import CORS
|
| 5 |
+
from pydub import AudioSegment
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
import Levenshtein
|
| 8 |
|
| 9 |
+
# Set the FFmpeg paths explicitly
|
| 10 |
AudioSegment.converter = "/usr/bin/ffmpeg"
|
| 11 |
AudioSegment.ffprobe = "/usr/bin/ffprobe"
|
| 12 |
|
| 13 |
+
# Set Hugging Face cache directory to avoid permission issues
|
| 14 |
os.environ['HF_HOME'] = '/tmp/.cache'
|
| 15 |
|
| 16 |
app = Flask(__name__)
|
| 17 |
CORS(app)
|
| 18 |
|
| 19 |
+
# Use Hugging Face ASR pipeline for automatic speech recognition
|
| 20 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-arabic")
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
def convert_to_wav(audio_bytes):
|
|
|
|
| 33 |
return None
|
| 34 |
|
| 35 |
|
| 36 |
+
def transcribe_audio(audio_bytes):
|
| 37 |
+
"""Transcribes the audio using the Hugging Face ASR pipeline."""
|
| 38 |
+
wav_io = convert_to_wav(audio_bytes)
|
| 39 |
if wav_io is None:
|
| 40 |
raise Exception("Could not convert audio to WAV format")
|
| 41 |
|
| 42 |
+
# Read the audio file into bytes for the ASR pipeline
|
| 43 |
+
wav_io.seek(0)
|
| 44 |
+
transcription = asr_pipeline(wav_io)["text"]
|
| 45 |
+
return transcription.strip()
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
def levenshtein_similarity(transcription1, transcription2):
|
|
|
|
| 65 |
user_audio_bytes = user_audio.read()
|
| 66 |
|
| 67 |
try:
|
| 68 |
+
transcription_original = transcribe_audio(original_audio_bytes)
|
| 69 |
+
transcription_user = transcribe_audio(user_audio_bytes)
|
| 70 |
except Exception as e:
|
| 71 |
return jsonify({"error": str(e)}), 500
|
| 72 |
|