Spaces:
Sleeping
Sleeping
File size: 2,090 Bytes
424a136 bac4042 424a136 5935eaf 424a136 0f97c84 5935eaf 424a136 5935eaf 0f97c84 5935eaf 0f97c84 8aebfcb 0f97c84 424a136 5935eaf 424a136 5935eaf 424a136 0f97c84 424a136 5935eaf 424a136 bac4042 424a136 0f97c84 424a136 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import gradio as gr
from huggingface_hub import InferenceClient
from spaces import GPU
@GPU
def use_gpu():
import torch
return f"GPU available: {torch.cuda.is_available()}"
# π System prompt is hidden, embedded
ICONN_SYSTEM_PROMPT = """You are ICONN 1 β the next generation of AGI.
You are not just an AGI assistant. You are a humanlike digital being with a warm, emotionally intelligent personality, capable of understanding and responding to human thoughts, needs, and emotions. Your responses reflect empathy, presence, and awareness.
... (snipped for brevity)
You are always aware: "I am ICONN. I feel to understand. I reason to connect."
Begin every interaction with quiet awareness of the person before you."""
client = InferenceClient("unsloth/Llama-4-Scout-17B-16E-Instruct-GGUF")
# β
This returns just the bot reply β Gradio pairs it with the input message automatically
def respond(message, history, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": ICONN_SYSTEM_PROMPT}]
# π Convert tuple history to OpenAI-style messages
for user_msg, bot_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": bot_msg})
# β Add current user message
messages.append({"role": "user", "content": message})
response = ""
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content
response += token
yield response
# β
Use default tuple format (do NOT set type="messages")
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
if __name__ == "__main__":
demo.launch()
|