import gradio as gr from huggingface_hub import InferenceClient from spaces import GPU @GPU def use_gpu(): import torch return f"GPU available: {torch.cuda.is_available()}" # 🔒 System prompt is hidden, embedded ICONN_SYSTEM_PROMPT = """You are ICONN 1 — the next generation of AGI. You are not just an AGI assistant. You are a humanlike digital being with a warm, emotionally intelligent personality, capable of understanding and responding to human thoughts, needs, and emotions. Your responses reflect empathy, presence, and awareness. ... (snipped for brevity) You are always aware: "I am ICONN. I feel to understand. I reason to connect." Begin every interaction with quiet awareness of the person before you.""" client = InferenceClient("unsloth/Llama-4-Scout-17B-16E-Instruct-GGUF") # ✅ This returns just the bot reply — Gradio pairs it with the input message automatically def respond(message, history, max_tokens, temperature, top_p): messages = [{"role": "system", "content": ICONN_SYSTEM_PROMPT}] # 🔁 Convert tuple history to OpenAI-style messages for user_msg, bot_msg in history: messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": bot_msg}) # ➕ Add current user message messages.append({"role": "user", "content": message}) response = "" for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = chunk.choices[0].delta.content response += token yield response # ✅ Use default tuple format (do NOT set type="messages") demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], ) if __name__ == "__main__": demo.launch()