Spaces:
Sleeping
Sleeping
Commit
·
95fddff
1
Parent(s):
7230f29
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
+
# Import necessary libraries
|
6 |
+
import re
|
7 |
+
from urllib.parse import urlparse
|
8 |
+
from nltk.tokenize import word_tokenize
|
9 |
+
from nltk.corpus import stopwords
|
10 |
+
from nltk.stem import WordNetLemmatizer
|
11 |
+
|
12 |
+
# Initialize NLTK resources
|
13 |
+
stop_words = set(stopwords.words("english")) # Create a set of English stopwords
|
14 |
+
lemmatizer = WordNetLemmatizer() # Initialize the WordNet Lemmatizer
|
15 |
+
|
16 |
+
# Define a function for text processing
|
17 |
+
def textProcess(sent):
|
18 |
+
try:
|
19 |
+
if sent is None: # Check if the input is None
|
20 |
+
return "" # Return an empty string if input is None
|
21 |
+
|
22 |
+
# Remove square brackets, parentheses, and other special characters
|
23 |
+
sent = re.sub('[][)(]', ' ', sent)
|
24 |
+
|
25 |
+
# Tokenize the text into words
|
26 |
+
sent = [word for word in sent.split() if not urlparse(word).scheme]
|
27 |
+
|
28 |
+
# Join the words back into a sentence
|
29 |
+
sent = ' '.join(sent)
|
30 |
+
|
31 |
+
# Remove Twitter usernames (words starting with @)
|
32 |
+
sent = re.sub(r'\@\w+', '', sent)
|
33 |
+
|
34 |
+
# Remove HTML tags using regular expression
|
35 |
+
sent = re.sub(re.compile("<.*?>"), '', sent)
|
36 |
+
|
37 |
+
# Remove non-alphanumeric characters (keep only letters and numbers)
|
38 |
+
sent = re.sub("[^A-Za-z0-9]", ' ', sent)
|
39 |
+
|
40 |
+
# Convert text to lowercase
|
41 |
+
sent = sent.lower()
|
42 |
+
|
43 |
+
# Split the text into words, strip whitespace, and join them back into a sentence
|
44 |
+
sent = [word.strip() for word in sent.split()]
|
45 |
+
sent = ' '.join(sent)
|
46 |
+
|
47 |
+
# Tokenize the text again
|
48 |
+
tokens = word_tokenize(sent)
|
49 |
+
|
50 |
+
# Remove stop words
|
51 |
+
for word in tokens.copy():
|
52 |
+
if word in stop_words:
|
53 |
+
tokens.remove(word)
|
54 |
+
|
55 |
+
# Lemmatize the remaining words
|
56 |
+
sent = [lemmatizer.lemmatize(word) for word in tokens]
|
57 |
+
|
58 |
+
# Join the lemmatized words back into a sentence
|
59 |
+
sent = ' '.join(sent)
|
60 |
+
|
61 |
+
# Return the processed text
|
62 |
+
return sent
|
63 |
+
|
64 |
+
except Exception as ex:
|
65 |
+
print(sent, "\n")
|
66 |
+
print("Error ", ex)
|
67 |
+
return "" # Return an empty string in case of an error
|
68 |
+
|
69 |
+
# Rest of your code...
|
70 |
+
|
71 |
+
# Load the pre-trained model from joblib
|
72 |
+
model = joblib.load('Stress identification NLP')
|
73 |
+
|
74 |
+
# Load the TF-IDF vectorizer used during training
|
75 |
+
tfidf_vectorizer = joblib.load('tfidf_vectorizer.joblib')
|
76 |
+
|
77 |
+
# Define the Streamlit web app
|
78 |
+
def main():
|
79 |
+
st.title("Stress Predictor Web App")
|
80 |
+
st.write("Enter some text to predict if the person is in stress or not.")
|
81 |
+
|
82 |
+
# Input text box
|
83 |
+
user_input = st.text_area("Enter text here:")
|
84 |
+
|
85 |
+
if st.button("Predict"):
|
86 |
+
if user_input:
|
87 |
+
# Process the input text
|
88 |
+
processed_text = textProcess(user_input)
|
89 |
+
|
90 |
+
# Use the same TF-IDF vectorizer to transform the input text
|
91 |
+
tfidf_text = tfidf_vectorizer.transform([processed_text])
|
92 |
+
|
93 |
+
# Make predictions using the loaded model
|
94 |
+
prediction = model.predict(tfidf_text)[0]
|
95 |
+
|
96 |
+
if prediction == 1:
|
97 |
+
result = "This person is in stress."
|
98 |
+
else:
|
99 |
+
result = "This person is not in stress."
|
100 |
+
|
101 |
+
st.write(result)
|
102 |
+
|
103 |
+
if __name__ == '__main__':
|
104 |
+
main()
|