Upload 2 files
Browse files- Dockerfile +7 -9
- app.py +30 -15
Dockerfile
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
# Use an official Python runtime
|
2 |
-
FROM python:3.
|
3 |
|
4 |
# Set working directory
|
5 |
WORKDIR /app
|
@@ -13,17 +13,15 @@ RUN apt-get update && apt-get install -y \
|
|
13 |
# Install Ollama
|
14 |
RUN curl -fsSL https://ollama.com/install.sh | sh
|
15 |
|
16 |
-
|
17 |
-
# Pull llama3 model during build to avoid runtime delays
|
18 |
RUN ollama serve & \
|
19 |
until curl -s http://localhost:11434 > /dev/null; do \
|
20 |
echo 'Waiting for Ollama...'; sleep 1; \
|
21 |
done && \
|
22 |
ollama pull llama3 && \
|
|
|
23 |
ollama list > /app/models.txt && \
|
24 |
cat /app/models.txt
|
25 |
-
########################################################
|
26 |
-
|
27 |
|
28 |
# Copy requirements file first (optimization for caching)
|
29 |
COPY requirements.txt .
|
@@ -31,7 +29,7 @@ COPY requirements.txt .
|
|
31 |
# Install Python dependencies
|
32 |
RUN pip install --no-cache-dir -r requirements.txt
|
33 |
|
34 |
-
# Copy only
|
35 |
COPY app.py .
|
36 |
|
37 |
# Expose the port Hugging Face Spaces expects
|
@@ -41,5 +39,5 @@ EXPOSE 7860
|
|
41 |
ENV OLLAMA_HOST=0.0.0.0
|
42 |
ENV OLLAMA_PORT=11434
|
43 |
|
44 |
-
# Start Ollama and
|
45 |
-
CMD bash -c "ollama serve & until curl -s http://localhost:11434 > /dev/null; do echo 'Waiting for Ollama...'; sleep 1; done && streamlit run app.py --server.port 7860 --server.address 0.0.0.0"
|
|
|
1 |
+
# Use an official Python runtime matching Hugging Face's environment
|
2 |
+
FROM python:3.10-slim
|
3 |
|
4 |
# Set working directory
|
5 |
WORKDIR /app
|
|
|
13 |
# Install Ollama
|
14 |
RUN curl -fsSL https://ollama.com/install.sh | sh
|
15 |
|
16 |
+
# Pre-pull llama3 during build to avoid runtime delays
|
|
|
17 |
RUN ollama serve & \
|
18 |
until curl -s http://localhost:11434 > /dev/null; do \
|
19 |
echo 'Waiting for Ollama...'; sleep 1; \
|
20 |
done && \
|
21 |
ollama pull llama3 && \
|
22 |
+
echo "Model pulled successfully" || echo "Model pull failed" && \
|
23 |
ollama list > /app/models.txt && \
|
24 |
cat /app/models.txt
|
|
|
|
|
25 |
|
26 |
# Copy requirements file first (optimization for caching)
|
27 |
COPY requirements.txt .
|
|
|
29 |
# Install Python dependencies
|
30 |
RUN pip install --no-cache-dir -r requirements.txt
|
31 |
|
32 |
+
# Copy only the app file
|
33 |
COPY app.py .
|
34 |
|
35 |
# Expose the port Hugging Face Spaces expects
|
|
|
39 |
ENV OLLAMA_HOST=0.0.0.0
|
40 |
ENV OLLAMA_PORT=11434
|
41 |
|
42 |
+
# Start Ollama and Streamlit with a more robust wait
|
43 |
+
CMD bash -c "ollama serve & sleep 5 && until curl -s http://localhost:11434 > /dev/null; do echo 'Waiting for Ollama...'; sleep 1; done && streamlit run app.py --server.port 7860 --server.address 0.0.0.0"
|
app.py
CHANGED
@@ -6,8 +6,13 @@ from atomic_agents.lib.components.system_prompt_generator import SystemPromptGen
|
|
6 |
from atomic_agents.agents.base_agent import BaseAgent, BaseAgentConfig, BaseAgentInputSchema, BaseAgentOutputSchema
|
7 |
from dotenv import load_dotenv
|
8 |
import asyncio
|
|
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
|
|
11 |
load_dotenv()
|
12 |
|
13 |
# Initialize Streamlit app
|
@@ -20,18 +25,24 @@ def setup_client(provider):
|
|
20 |
from openai import AsyncOpenAI
|
21 |
api_key = os.getenv("OPENAI_API_KEY")
|
22 |
if not api_key:
|
23 |
-
st.warning("OpenAI
|
24 |
-
return setup_client("ollama")
|
25 |
client = instructor.from_openai(AsyncOpenAI(api_key=api_key))
|
26 |
model = "gpt-4o-mini"
|
27 |
display_model = "OpenAI (gpt-4o-mini)"
|
28 |
elif provider == "ollama":
|
29 |
from openai import AsyncOpenAI as OllamaClient
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
else:
|
36 |
st.error(f"Unsupported provider: {provider}")
|
37 |
return None, None, None
|
@@ -50,7 +61,7 @@ system_prompt_generator = SystemPromptGenerator(
|
|
50 |
)
|
51 |
|
52 |
# Provider selection
|
53 |
-
providers_list = ["ollama", "openai"]
|
54 |
selected_provider = st.selectbox("Choose a provider:", providers_list, key="provider_select")
|
55 |
|
56 |
# Set up client and agent based on the selected provider
|
@@ -73,7 +84,7 @@ if "agent" not in st.session_state or st.session_state.get("current_model") != m
|
|
73 |
memory=st.session_state.memory,
|
74 |
system_role="developer",
|
75 |
))
|
76 |
-
st.session_state.current_model = model
|
77 |
|
78 |
# Display the selected model
|
79 |
st.markdown(f"**Selected Model:** {st.session_state.display_model}")
|
@@ -107,11 +118,15 @@ if user_input:
|
|
107 |
response_container = st.empty()
|
108 |
async def stream_response():
|
109 |
current_response = ""
|
110 |
-
|
111 |
-
|
112 |
-
if partial_response
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
115 |
|
116 |
# After streaming completes, add the final response to conversation and memory
|
117 |
st.session_state.conversation.append(("assistant", current_response))
|
|
|
6 |
from atomic_agents.agents.base_agent import BaseAgent, BaseAgentConfig, BaseAgentInputSchema, BaseAgentOutputSchema
|
7 |
from dotenv import load_dotenv
|
8 |
import asyncio
|
9 |
+
import logging
|
10 |
|
11 |
+
# Set up logging
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
# Load environment variables (optional for Hugging Face Secrets)
|
16 |
load_dotenv()
|
17 |
|
18 |
# Initialize Streamlit app
|
|
|
25 |
from openai import AsyncOpenAI
|
26 |
api_key = os.getenv("OPENAI_API_KEY")
|
27 |
if not api_key:
|
28 |
+
st.warning("OpenAI unavailable: OPENAI_API_KEY not set. Using Ollama.")
|
29 |
+
return setup_client("ollama")
|
30 |
client = instructor.from_openai(AsyncOpenAI(api_key=api_key))
|
31 |
model = "gpt-4o-mini"
|
32 |
display_model = "OpenAI (gpt-4o-mini)"
|
33 |
elif provider == "ollama":
|
34 |
from openai import AsyncOpenAI as OllamaClient
|
35 |
+
try:
|
36 |
+
client = instructor.from_openai(
|
37 |
+
OllamaClient(base_url="http://localhost:11434/v1", api_key="ollama"), mode=instructor.Mode.JSON
|
38 |
+
)
|
39 |
+
model = "llama3"
|
40 |
+
display_model = "Ollama (llama3)"
|
41 |
+
logger.info("Ollama client initialized successfully")
|
42 |
+
except Exception as e:
|
43 |
+
logger.error(f"Failed to initialize Ollama client: {e}")
|
44 |
+
st.error(f"Ollama connection failed: {e}")
|
45 |
+
return None, None, None
|
46 |
else:
|
47 |
st.error(f"Unsupported provider: {provider}")
|
48 |
return None, None, None
|
|
|
61 |
)
|
62 |
|
63 |
# Provider selection
|
64 |
+
providers_list = ["ollama", "openai"]
|
65 |
selected_provider = st.selectbox("Choose a provider:", providers_list, key="provider_select")
|
66 |
|
67 |
# Set up client and agent based on the selected provider
|
|
|
84 |
memory=st.session_state.memory,
|
85 |
system_role="developer",
|
86 |
))
|
87 |
+
st.session_state.current_model = model
|
88 |
|
89 |
# Display the selected model
|
90 |
st.markdown(f"**Selected Model:** {st.session_state.display_model}")
|
|
|
118 |
response_container = st.empty()
|
119 |
async def stream_response():
|
120 |
current_response = ""
|
121 |
+
try:
|
122 |
+
async for partial_response in st.session_state.agent.run_async(input_schema):
|
123 |
+
if hasattr(partial_response, "chat_message") and partial_response.chat_message:
|
124 |
+
if partial_response.chat_message != current_response:
|
125 |
+
current_response = partial_response.chat_message
|
126 |
+
response_container.markdown(current_response)
|
127 |
+
except Exception as e:
|
128 |
+
logger.error(f"Error streaming response: {e}")
|
129 |
+
response_container.error(f"Error: {e}")
|
130 |
|
131 |
# After streaming completes, add the final response to conversation and memory
|
132 |
st.session_state.conversation.append(("assistant", current_response))
|