lorentz commited on
Commit
df714ab
·
verified ·
1 Parent(s): 33f1c52

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -76
app.py CHANGED
@@ -1,103 +1,77 @@
1
  import streamlit as st
2
  from streamlit_chat import message
3
- from langchain_openai import ChatOpenAI
4
- from langchain.chains import ConversationChain
5
- from langchain.chains.conversation.memory import (ConversationBufferMemory,
6
- ConversationSummaryMemory,
7
- ConversationBufferWindowMemory
8
-
9
- )
10
 
11
- if 'conversation' not in st.session_state:
12
- st.session_state['conversation'] =None
13
- if 'messages' not in st.session_state:
14
- st.session_state['messages'] =[]
15
- if 'API_Key' not in st.session_state:
16
- st.session_state['API_Key'] =''
17
 
18
- # Setting page title and header
19
- st.set_page_config(page_title="ChatMate: Your Professional AI Conversation Partner Solution", page_icon=":robot_face:")
20
- st.markdown("<h1 style='text-align: center; color: navy;'>ChatMate</h1>", unsafe_allow_html=True)
21
- st.markdown("<h4 style='text-align: center;'>A cutting-edge language model</h4>", unsafe_allow_html=True)
22
- st.markdown("<p style='text-align: right'>By <a href='https://entzyeung.github.io/portfolio/index.html'>Lorentz Yeung</a></p>", unsafe_allow_html=True)
23
 
24
- st.markdown("<p style='text-align: left;'>I am capable of recalling previous parts of our conversation, such as remembering your name if you share it with me.</p>", unsafe_allow_html=True)
25
- st.session_state['API_Key']= st.text_input("First, to get it work, put your OpenAI API Key here please, the system will enter for you automatically.",type="password")
26
- st.markdown("<p style='text-align: left;'>Then Tell me how I can help:</p>", unsafe_allow_html=True)
27
 
28
 
 
 
 
 
29
 
30
- # API Keys
31
- # st.sidebar.text_input() will automatically update st.session_state['API_Key'] with the input value whenever the user types into the field.
32
- st.sidebar.title("Introduction")
33
- st.sidebar.markdown("""
34
- ChatMate is an advanced conversational AI interface, expertly crafted to demonstrate the fusion of Streamlit's user-friendly design and OpenAI's powerful GPT-3.5 model. Here are its highlights:
35
 
36
- <ul style='text-align: left;'>
37
- <li><strong>Intuitive Interface</strong>: Built with Streamlit, ChatMate offers a clean, responsive user experience, allowing for natural dialogue with the AI.</li>
38
- <li><strong>Advanced NLP</strong>: Incorporating OpenAI's most advanced GPT model, the app provides nuanced understanding and generation of human-like text, showcasing the model's impressive capabilities.</li>
39
- <li><strong>State Management</strong>: Utilizes <code>ConversationChain</code> and <code>ConversationMemory</code> from <code>langchain</code> to preserve the context and flow, ensuring coherent and engaging interactions.</li>
40
- <li><strong>Python Proficiency</strong>: The app's robust backend, written in Python, reflects the data scientist’s adeptness in programming and system design.</li>
41
- <li><strong>Secure Interaction</strong>: Streamlit's session state management is used for secure API key handling and user input retention across sessions.</li>
42
- </ul>
43
 
44
- ChatMate is developed by Lorentz Yeung
45
- """, unsafe_allow_html=True)
46
 
47
- #st.session_state['API_Key']= st.sidebar.text_input("Put your OpenAI API Key here please, the system will enter for you automatically.",type="password")
48
 
49
- # summarise_button = st.sidebar.button("Summarise the conversation", key="summarise")
50
- #if summarise_button:
51
- # summarise_placeholder = st.sidebar.write("Nice chatting with you my friend ❤️")
52
 
 
 
53
 
 
 
 
54
 
55
- # Function to get response from the model
56
- def getresponse(userInput, api_key):
57
 
58
- if st.session_state['conversation'] is None:
 
59
 
60
- llm = ChatOpenAI(
61
- temperature=0,
62
- openai_api_key=api_key,
63
- model_name='gpt-3.5-turbo'
64
- )
65
 
66
- st.session_state['conversation'] = ConversationChain(
67
- llm=llm,
68
- verbose=True,
69
- memory=ConversationSummaryMemory(llm=llm)
70
- )
71
 
72
- response=st.session_state['conversation'].predict(input=userInput)
73
- print(st.session_state['conversation'].memory.buffer)
74
-
75
 
76
- return response
 
77
 
 
 
 
 
78
 
 
 
79
 
80
- response_container = st.container()
81
- # Here we will have a container for user input text box
82
- container = st.container()
83
 
84
- # User input and response display
85
- with container:
86
- with st.form(key='my_form', clear_on_submit=True):
87
- user_input = st.text_area("Ask me questions please", key='input', height=100)
88
- submit_button = st.form_submit_button(label='Send')
89
 
90
- if submit_button:
91
- st.session_state['messages'].append(user_input)
92
- model_response=getresponse(user_input,st.session_state['API_Key'])
93
- st.session_state['messages'].append(model_response)
94
-
95
 
96
- with response_container:
97
- for i in range(len(st.session_state['messages'])):
98
- if (i % 2) == 0:
99
- message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user')
100
- else:
101
- message(st.session_state['messages'][i], key=str(i) + '_AI')
102
 
103
-
 
1
  import streamlit as st
2
  from streamlit_chat import message
 
 
 
 
 
 
 
3
 
4
+ from langchain.document_loaders import CSVLoader
5
+ from langchain_openai import OpenAIEmbeddings
6
+ from langchain.chains import RetrievalQA
7
+ from langchain.chains import ConversationalRetrievalChain
 
 
8
 
9
+ from langchain_openai import ChatOpenAI
10
+ import os
11
+ from langchain_community.vectorstores import Chroma
 
 
12
 
13
+ import tempfile
 
 
14
 
15
 
16
+ user_api_key = st.sidebar.text_input(
17
+ label="#### Your OpenAI API key 👇",
18
+ placeholder="user_historye your openAI API key, sk-",
19
+ type="password")
20
 
21
+ # uploaded_file = st.sidebar.file_uploader("upload", type="csv")
 
 
 
 
22
 
23
+ persist_directory = "chroma/db"
24
+ embeddings = OpenAIEmbeddings()
25
+ KaggleX_courses_db = Chroma(persist_directory = persist_directory, embedding_function=embeddings)
 
 
 
 
26
 
 
 
27
 
 
28
 
29
+ if KaggleX_courses_db :
 
 
30
 
31
+ KaggleX_courses_db = Chroma(persist_directory = persist_directory, embedding_function=embeddings)
32
+ retriever = KaggleX_courses_db.as_retriever() # search_kwargs={"k": 4}
33
 
34
+ chain = ConversationalRetrievalChain.from_llm(llm = ChatOpenAI(temperature=0.0,model_name='gpt-3.5-turbo',
35
+ openai_api_key=user_api_key),
36
+ retriever = retriever)
37
 
38
+ def conversational_chat(query):
 
39
 
40
+ result = chain({"question": query, "chat_history": st.session_state['history']})
41
+ st.session_state['history'].append((query, result["answer"]))
42
 
43
+ return result["answer"]
 
 
 
 
44
 
45
+ if 'history' not in st.session_state:
46
+ st.session_state['history'] = []
 
 
 
47
 
48
+ if 'ai_history' not in st.session_state:
49
+ st.session_state['ai_history'] = ["Hello ! Ask me anything about KaggleX courses!"]
 
50
 
51
+ if 'user_history' not in st.session_state:
52
+ st.session_state['user_history'] = ["I would like to know more about the KaggleX courses!]
53
 
54
+ #container for the chat history
55
+ response_container = st.container()
56
+ #container for the user's text input
57
+ container = st.container()
58
 
59
+ with container:
60
+ with st.form(key='my_form', clear_on_submit=True):
61
 
62
+ user_input = st.text_input("Query:", placeholder="Learn more about the courses in KaggleX:", key='input')
63
+ submit_button = st.form_submit_button(label='Ask')
 
64
 
65
+ if submit_button and user_input:
66
+ output = conversational_chat(user_input) # if the button is clicked, then submit he query to the Chain, and take the history from session_state.
 
 
 
67
 
68
+ st.session_state['user_history'].append(user_input) # store the user input to user history
69
+ st.session_state['ai_history'].append(output) # store the AI prediction to ai history
 
 
 
70
 
71
+ # the chat interface.
72
+ if st.session_state['ai_history']:
73
+ with response_container:
74
+ for i in range(len(st.session_state['ai_history'])):
75
+ message(st.session_state["user_history"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile")
76
+ message(st.session_state["ai_history"][i], key=str(i), avatar_style="thumbs")
77