Spaces:
Running
Running
Update frontend.py
Browse files- frontend.py +16 -42
frontend.py
CHANGED
@@ -1,15 +1,9 @@
|
|
1 |
# frontend.py
|
2 |
-
"""
|
3 |
-
Streamlit frontend for MCP Agent
|
4 |
-
Provides a chat interface for interacting with the MCP backend
|
5 |
-
"""
|
6 |
-
|
7 |
import streamlit as st
|
8 |
import asyncio
|
9 |
from backend import get_agent, MCPAgent
|
10 |
import time
|
11 |
|
12 |
-
# Page configuration
|
13 |
st.set_page_config(
|
14 |
page_title="MCP Agent Chat",
|
15 |
page_icon="π€",
|
@@ -17,7 +11,6 @@ st.set_page_config(
|
|
17 |
initial_sidebar_state="expanded"
|
18 |
)
|
19 |
|
20 |
-
# Custom CSS for better chat appearance
|
21 |
st.markdown("""
|
22 |
<style>
|
23 |
.stChatMessage {
|
@@ -50,14 +43,20 @@ if "messages" not in st.session_state:
|
|
50 |
|
51 |
# Sidebar
|
52 |
with st.sidebar:
|
53 |
-
st.title("π€ MCP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
st.markdown("---")
|
55 |
|
56 |
-
# Status indicator
|
57 |
if st.session_state.agent_initialized:
|
58 |
st.success("β
Agent Connected")
|
59 |
|
60 |
-
# Show available tools
|
61 |
st.markdown("### π οΈ Available Tools")
|
62 |
available_tools = st.session_state.get("available_tools", [])
|
63 |
for tool in available_tools:
|
@@ -67,7 +66,6 @@ with st.sidebar:
|
|
67 |
|
68 |
st.markdown("---")
|
69 |
|
70 |
-
# Example queries
|
71 |
st.markdown("### π‘ Example Queries")
|
72 |
example_queries = [
|
73 |
"What's the price of AAPL?",
|
@@ -85,21 +83,12 @@ with st.sidebar:
|
|
85 |
|
86 |
st.markdown("---")
|
87 |
|
88 |
-
# Clear chat button
|
89 |
if st.button("ποΈ Clear Chat", type="secondary"):
|
90 |
st.session_state.messages = []
|
91 |
st.session_state.history = []
|
92 |
st.rerun()
|
93 |
|
94 |
-
# Info section
|
95 |
-
st.markdown("### βΉοΈ About")
|
96 |
-
st.markdown("""
|
97 |
-
This chat interface connects to:
|
98 |
-
- **Math Server**: Basic arithmetic operations
|
99 |
-
- **Stock Server**: Real-time market data
|
100 |
|
101 |
-
The agent uses LangChain and MCP to intelligently route your queries to the appropriate tools.
|
102 |
-
""")
|
103 |
|
104 |
# Main chat interface
|
105 |
st.title("π¬ MCP Agent Chat")
|
@@ -123,96 +112,81 @@ async def initialize_agent():
|
|
123 |
return False
|
124 |
return True
|
125 |
|
126 |
-
# Process user message
|
127 |
async def process_user_message(user_input: str):
|
128 |
"""Process the user's message and get response from agent"""
|
129 |
agent = get_agent()
|
130 |
|
131 |
-
|
132 |
st.session_state.history.append({"role": "user", "content": user_input})
|
133 |
|
134 |
try:
|
135 |
-
|
136 |
response = await agent.process_message(user_input, st.session_state.history)
|
137 |
|
138 |
-
|
139 |
st.session_state.history.append({"role": "assistant", "content": response})
|
140 |
|
141 |
return response
|
142 |
except Exception as e:
|
143 |
return f"Error: {str(e)}"
|
144 |
|
145 |
-
|
146 |
for message in st.session_state.messages:
|
147 |
with st.chat_message(message["role"]):
|
148 |
st.markdown(message["content"])
|
149 |
|
150 |
-
|
151 |
if st.session_state.pending_query:
|
152 |
query = st.session_state.pending_query
|
153 |
st.session_state.pending_query = None # Clear it
|
154 |
|
155 |
-
# Add to messages
|
156 |
st.session_state.messages.append({"role": "user", "content": query})
|
157 |
|
158 |
-
# Process the query
|
159 |
async def process_example():
|
160 |
if not st.session_state.agent_initialized:
|
161 |
if not await initialize_agent():
|
162 |
return "Failed to initialize agent. Please check the servers."
|
163 |
return await process_user_message(query)
|
164 |
|
165 |
-
# Get response
|
166 |
with st.spinner("Processing..."):
|
167 |
response = asyncio.run(process_example())
|
168 |
|
169 |
-
# Add response to messages
|
170 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
171 |
|
172 |
-
# Rerun to display the new messages
|
173 |
st.rerun()
|
174 |
|
175 |
-
# Chat input
|
176 |
if prompt := st.chat_input("Type your message here..."):
|
177 |
-
# Add user message to chat
|
178 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
179 |
|
180 |
-
# Display user message
|
181 |
with st.chat_message("user"):
|
182 |
st.markdown(prompt)
|
183 |
|
184 |
-
# Get and display assistant response
|
185 |
with st.chat_message("assistant"):
|
186 |
message_placeholder = st.empty()
|
187 |
|
188 |
-
# Run async function
|
189 |
async def get_response():
|
190 |
-
# Initialize agent if needed
|
191 |
if not st.session_state.agent_initialized:
|
192 |
if not await initialize_agent():
|
193 |
return "Failed to initialize agent. Please check the servers."
|
194 |
|
195 |
-
# Process message
|
196 |
return await process_user_message(prompt)
|
197 |
|
198 |
-
# Execute async function
|
199 |
with st.spinner("Thinking..."):
|
200 |
response = asyncio.run(get_response())
|
201 |
|
202 |
message_placeholder.markdown(response)
|
203 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
204 |
|
205 |
-
# Auto-initialize agent on first load
|
206 |
if not st.session_state.agent_initialized:
|
207 |
with st.spinner("π§ Initializing agent..."):
|
208 |
asyncio.run(initialize_agent())
|
209 |
|
210 |
-
# Footer
|
211 |
st.markdown("---")
|
212 |
st.markdown(
|
213 |
"""
|
214 |
<div style='text-align: center; color: #666;'>
|
215 |
-
Powered by LangChain, MCP, and Hugging Face
|
|
|
216 |
</div>
|
217 |
""",
|
218 |
unsafe_allow_html=True
|
|
|
1 |
# frontend.py
|
|
|
|
|
|
|
|
|
|
|
2 |
import streamlit as st
|
3 |
import asyncio
|
4 |
from backend import get_agent, MCPAgent
|
5 |
import time
|
6 |
|
|
|
7 |
st.set_page_config(
|
8 |
page_title="MCP Agent Chat",
|
9 |
page_icon="π€",
|
|
|
11 |
initial_sidebar_state="expanded"
|
12 |
)
|
13 |
|
|
|
14 |
st.markdown("""
|
15 |
<style>
|
16 |
.stChatMessage {
|
|
|
43 |
|
44 |
# Sidebar
|
45 |
with st.sidebar:
|
46 |
+
st.title("π€ MCP AI Algo Trade App Demo")
|
47 |
+
st.markdown("### βΉοΈ About")
|
48 |
+
st.markdown("""
|
49 |
+
This chat interface connects to:
|
50 |
+
- **Math Server**: Basic arithmetic operations
|
51 |
+
- **Stock Server**: Mock Real-time market data
|
52 |
+
|
53 |
+
The agent uses LangChain and MCP to intelligently route your queries to the appropriate tools.
|
54 |
+
""")
|
55 |
st.markdown("---")
|
56 |
|
|
|
57 |
if st.session_state.agent_initialized:
|
58 |
st.success("β
Agent Connected")
|
59 |
|
|
|
60 |
st.markdown("### π οΈ Available Tools")
|
61 |
available_tools = st.session_state.get("available_tools", [])
|
62 |
for tool in available_tools:
|
|
|
66 |
|
67 |
st.markdown("---")
|
68 |
|
|
|
69 |
st.markdown("### π‘ Example Queries")
|
70 |
example_queries = [
|
71 |
"What's the price of AAPL?",
|
|
|
83 |
|
84 |
st.markdown("---")
|
85 |
|
|
|
86 |
if st.button("ποΈ Clear Chat", type="secondary"):
|
87 |
st.session_state.messages = []
|
88 |
st.session_state.history = []
|
89 |
st.rerun()
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
|
|
|
|
92 |
|
93 |
# Main chat interface
|
94 |
st.title("π¬ MCP Agent Chat")
|
|
|
112 |
return False
|
113 |
return True
|
114 |
|
|
|
115 |
async def process_user_message(user_input: str):
|
116 |
"""Process the user's message and get response from agent"""
|
117 |
agent = get_agent()
|
118 |
|
119 |
+
|
120 |
st.session_state.history.append({"role": "user", "content": user_input})
|
121 |
|
122 |
try:
|
123 |
+
|
124 |
response = await agent.process_message(user_input, st.session_state.history)
|
125 |
|
126 |
+
|
127 |
st.session_state.history.append({"role": "assistant", "content": response})
|
128 |
|
129 |
return response
|
130 |
except Exception as e:
|
131 |
return f"Error: {str(e)}"
|
132 |
|
133 |
+
|
134 |
for message in st.session_state.messages:
|
135 |
with st.chat_message(message["role"]):
|
136 |
st.markdown(message["content"])
|
137 |
|
138 |
+
|
139 |
if st.session_state.pending_query:
|
140 |
query = st.session_state.pending_query
|
141 |
st.session_state.pending_query = None # Clear it
|
142 |
|
|
|
143 |
st.session_state.messages.append({"role": "user", "content": query})
|
144 |
|
|
|
145 |
async def process_example():
|
146 |
if not st.session_state.agent_initialized:
|
147 |
if not await initialize_agent():
|
148 |
return "Failed to initialize agent. Please check the servers."
|
149 |
return await process_user_message(query)
|
150 |
|
|
|
151 |
with st.spinner("Processing..."):
|
152 |
response = asyncio.run(process_example())
|
153 |
|
|
|
154 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
155 |
|
|
|
156 |
st.rerun()
|
157 |
|
|
|
158 |
if prompt := st.chat_input("Type your message here..."):
|
|
|
159 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
160 |
|
|
|
161 |
with st.chat_message("user"):
|
162 |
st.markdown(prompt)
|
163 |
|
|
|
164 |
with st.chat_message("assistant"):
|
165 |
message_placeholder = st.empty()
|
166 |
|
|
|
167 |
async def get_response():
|
|
|
168 |
if not st.session_state.agent_initialized:
|
169 |
if not await initialize_agent():
|
170 |
return "Failed to initialize agent. Please check the servers."
|
171 |
|
|
|
172 |
return await process_user_message(prompt)
|
173 |
|
|
|
174 |
with st.spinner("Thinking..."):
|
175 |
response = asyncio.run(get_response())
|
176 |
|
177 |
message_placeholder.markdown(response)
|
178 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
179 |
|
|
|
180 |
if not st.session_state.agent_initialized:
|
181 |
with st.spinner("π§ Initializing agent..."):
|
182 |
asyncio.run(initialize_agent())
|
183 |
|
|
|
184 |
st.markdown("---")
|
185 |
st.markdown(
|
186 |
"""
|
187 |
<div style='text-align: center; color: #666;'>
|
188 |
+
Powered by LangGraph, LangChain, MCP, and Hugging Face
|
189 |
+
Developed by Lorentz Yeung
|
190 |
</div>
|
191 |
""",
|
192 |
unsafe_allow_html=True
|