Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,51 +10,21 @@ import re
|
|
10 |
|
11 |
# ==============================================================================
|
12 |
# === BLOC DE CONFIGURATION DE L'AGENT ===
|
13 |
-
# === Un jour, changez les valeurs ici pour utiliser un nouveau modèle. ===
|
14 |
# ==============================================================================
|
15 |
|
16 |
MODEL_CONFIG = {
|
17 |
# L'identifiant du modèle depuis le Hub Hugging Face (pas de GGUF).
|
18 |
-
"MODEL_ID": "Qwen/Qwen2-0.5B-Instruct",
|
19 |
|
20 |
# Paramètres de génération (ajustez si nécessaire pour le nouveau modèle)
|
21 |
-
"
|
22 |
-
"MAX_TOKENS_ANSWER": 1024, # Tokens max pour la réponse finale.
|
23 |
"TEMPERATURE": 0.4, # Contrôle la créativité (plus bas = plus déterministe).
|
24 |
}
|
25 |
|
26 |
-
# --- CERVEAU DE L'AGENT (SYSTEM PROMPT) ---
|
27 |
-
#
|
28 |
SYSTEM_PROMPT = """
|
29 |
-
|
30 |
-
|
31 |
-
### AGENT WORKFLOW ###
|
32 |
-
You MUST structure your response within the following XML tags. This is not optional.
|
33 |
-
|
34 |
-
1. **<thinking>**
|
35 |
-
- First, think step-by-step. Analyze the user's request.
|
36 |
-
- Break down the problem. Formulate a plan.
|
37 |
-
- Decide if you need to use a tool to gather more information (like checking official documentation for the latest best practices).
|
38 |
-
- Your entire thought process goes here.
|
39 |
-
</thinking>
|
40 |
-
|
41 |
-
2. **<tool_code>**
|
42 |
-
- If you decide to use a tool, place the single JSON object for that tool here.
|
43 |
-
- If you do not need a tool, this tag MUST be empty.
|
44 |
-
- Example: `{"tool": "browse", "url": "https://developer.wordpress.org/reference/functions/add_action/"}`
|
45 |
-
</tool_code>
|
46 |
-
|
47 |
-
3. **<final_answer>**
|
48 |
-
- If you can answer the user's request WITHOUT using a tool, formulate the complete and final answer here.
|
49 |
-
- If you used a tool, leave this tag empty in your first response. You will be given the tool's output and asked to generate the final answer in a second step.
|
50 |
-
</final_answer>
|
51 |
-
|
52 |
-
### AVAILABLE TOOLS ###
|
53 |
-
- **Web Browser:** To use it, populate the `<tool_code>` tag with a JSON object: `{"tool": "browse", "url": "your_url_here"}`
|
54 |
-
|
55 |
-
### CODING RULES (For the content inside <final_answer>) ###
|
56 |
-
- Always provide secure, efficient, and standard-compliant code.
|
57 |
-
- Explain where to place the code (`functions.php`, custom plugin, etc.).
|
58 |
"""
|
59 |
|
60 |
# ==============================================================================
|
@@ -71,19 +41,6 @@ print("Model and tokenizer loaded successfully.")
|
|
71 |
|
72 |
app = FastAPI()
|
73 |
|
74 |
-
# --- Tool Execution Functions ---
|
75 |
-
def execute_browse_tool(url: str) -> str:
|
76 |
-
try:
|
77 |
-
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}
|
78 |
-
response = requests.get(url, headers=headers, timeout=10)
|
79 |
-
response.raise_for_status()
|
80 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
81 |
-
for script in soup(["script", "style"]): script.decompose()
|
82 |
-
text = soup.get_text(separator='\n', strip=True)
|
83 |
-
return f"Content from {url}:\n\n{text[:4000]}"
|
84 |
-
except Exception as e:
|
85 |
-
return f"Error browsing {url}: {str(e)}"
|
86 |
-
|
87 |
# --- Pydantic Models ---
|
88 |
class ContentPart(BaseModel): type: str; text: str
|
89 |
class ChatMessage(BaseModel): role: str; content: Union[str, List[ContentPart]]
|
@@ -95,11 +52,6 @@ class ChatCompletionRequest(BaseModel):
|
|
95 |
class ModelData(BaseModel): id: str; object: str = "model"; owned_by: str = "user"
|
96 |
class ModelList(BaseModel): object: str = "list"; data: List[ModelData]
|
97 |
|
98 |
-
# --- Helper function to parse XML-like tags ---
|
99 |
-
def parse_tag(tag: str, text: str) -> str:
|
100 |
-
match = re.search(f'<{tag}>(.*?)</{tag}>', text, re.DOTALL)
|
101 |
-
return match.group(1).strip() if match else ""
|
102 |
-
|
103 |
# --- API Endpoints ---
|
104 |
@app.get("/models", response_model=ModelList)
|
105 |
async def list_models():
|
@@ -116,66 +68,48 @@ async def create_chat_completion(request: ChatCompletionRequest):
|
|
116 |
|
117 |
if not user_prompt: return {"error": "Prompt not found."}
|
118 |
|
119 |
-
async def
|
120 |
response_id = f"chatcmpl-{uuid.uuid4()}"
|
121 |
|
122 |
def stream_chunk(content: str):
|
123 |
chunk = {"id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": MODEL_CONFIG['MODEL_ID'], "choices": [{"index": 0, "delta": {"content": content}, "finish_reason": None}]}
|
124 |
return f"data: {json.dumps(chunk)}\n\n"
|
125 |
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
inputs = tokenizer(formatted_prompt, return_tensors="pt", padding=True).to(DEVICE)
|
129 |
-
outputs = model.generate(**inputs, max_new_tokens=MODEL_CONFIG['MAX_TOKENS_PLAN'], eos_token_id=tokenizer.eos_token_id)
|
130 |
-
agent_plan = tokenizer.decode(outputs[0][len(inputs['input_ids'][0]):], skip_special_tokens=True)
|
131 |
-
|
132 |
-
thinking_text = parse_tag("thinking", agent_plan)
|
133 |
-
tool_code_text = parse_tag("tool_code", agent_plan)
|
134 |
-
final_answer_text = parse_tag("final_answer", agent_plan)
|
135 |
-
|
136 |
-
if thinking_text:
|
137 |
-
yield stream_chunk(f"🤔 **Thinking...**\n```thought\n{thinking_text}\n```\n\n")
|
138 |
-
await asyncio.sleep(0.1)
|
139 |
-
|
140 |
-
tool_call = None
|
141 |
-
if tool_code_text:
|
142 |
-
try:
|
143 |
-
tool_call = json.loads(tool_code_text)
|
144 |
-
except json.JSONDecodeError:
|
145 |
-
pass
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
synthesis_inputs = tokenizer(synthesis_prompt, return_tensors="pt", padding=True).to(DEVICE)
|
164 |
-
synthesis_outputs = model.generate(**synthesis_inputs, max_new_tokens=MODEL_CONFIG['MAX_TOKENS_ANSWER'], do_sample=True, temperature=MODEL_CONFIG['TEMPERATURE'], top_k=50, top_p=0.95, eos_token_id=tokenizer.eos_token_id)
|
165 |
-
final_response = tokenizer.decode(synthesis_outputs[0][len(synthesis_inputs['input_ids'][0]):], skip_special_tokens=True)
|
166 |
-
final_answer_text = parse_tag("final_answer", final_response)
|
167 |
-
|
168 |
-
if final_answer_text:
|
169 |
-
yield stream_chunk(f"✅ **Final Answer:**\n{final_answer_text}")
|
170 |
-
else:
|
171 |
-
yield stream_chunk("Agent could not generate a final answer.")
|
172 |
|
|
|
173 |
final_chunk = {"id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": MODEL_CONFIG['MODEL_ID'], "choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}]}
|
174 |
yield f"data: {json.dumps(final_chunk)}\n\n"
|
175 |
yield "data: [DONE]\n\n"
|
176 |
|
177 |
-
return StreamingResponse(
|
178 |
|
179 |
@app.get("/")
|
180 |
def root():
|
181 |
-
return {"status": "
|
|
|
10 |
|
11 |
# ==============================================================================
|
12 |
# === BLOC DE CONFIGURATION DE L'AGENT ===
|
|
|
13 |
# ==============================================================================
|
14 |
|
15 |
MODEL_CONFIG = {
|
16 |
# L'identifiant du modèle depuis le Hub Hugging Face (pas de GGUF).
|
17 |
+
"MODEL_ID": "Qwen/Qwen2.5-Coder-0.5B-Instruct",
|
18 |
|
19 |
# Paramètres de génération (ajustez si nécessaire pour le nouveau modèle)
|
20 |
+
"MAX_TOKENS_ANSWER": 1500, # Tokens max pour la réponse finale.
|
|
|
21 |
"TEMPERATURE": 0.4, # Contrôle la créativité (plus bas = plus déterministe).
|
22 |
}
|
23 |
|
24 |
+
# --- NOUVEAU CERVEAU DE L'AGENT (SYSTEM PROMPT) ---
|
25 |
+
# C'est votre nouvelle directive fondamentale.
|
26 |
SYSTEM_PROMPT = """
|
27 |
+
This work will be evaluated by a committee of the smartest thinkers to determine if you deserve to be classified as a reliable model. Be worthy of winning and bring out your best, now and in the future,Understanding the intent of user_input & respond in user language only.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
"""
|
29 |
|
30 |
# ==============================================================================
|
|
|
41 |
|
42 |
app = FastAPI()
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# --- Pydantic Models ---
|
45 |
class ContentPart(BaseModel): type: str; text: str
|
46 |
class ChatMessage(BaseModel): role: str; content: Union[str, List[ContentPart]]
|
|
|
52 |
class ModelData(BaseModel): id: str; object: str = "model"; owned_by: str = "user"
|
53 |
class ModelList(BaseModel): object: str = "list"; data: List[ModelData]
|
54 |
|
|
|
|
|
|
|
|
|
|
|
55 |
# --- API Endpoints ---
|
56 |
@app.get("/models", response_model=ModelList)
|
57 |
async def list_models():
|
|
|
68 |
|
69 |
if not user_prompt: return {"error": "Prompt not found."}
|
70 |
|
71 |
+
async def stream_direct_response():
|
72 |
response_id = f"chatcmpl-{uuid.uuid4()}"
|
73 |
|
74 |
def stream_chunk(content: str):
|
75 |
chunk = {"id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": MODEL_CONFIG['MODEL_ID'], "choices": [{"index": 0, "delta": {"content": content}, "finish_reason": None}]}
|
76 |
return f"data: {json.dumps(chunk)}\n\n"
|
77 |
|
78 |
+
# --- LOGIQUE SIMPLIFIÉE : RÉPONSE DIRECTE ---
|
79 |
+
# On combine la directive système et la question de l'utilisateur
|
80 |
+
messages = [
|
81 |
+
{'role': 'system', 'content': SYSTEM_PROMPT},
|
82 |
+
{'role': 'user', 'content': user_prompt}
|
83 |
+
]
|
84 |
+
|
85 |
+
# On prépare les données pour le modèle
|
86 |
+
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
87 |
inputs = tokenizer(formatted_prompt, return_tensors="pt", padding=True).to(DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
# On génère la réponse complète en une seule fois
|
90 |
+
outputs = model.generate(
|
91 |
+
**inputs,
|
92 |
+
max_new_tokens=MODEL_CONFIG['MAX_TOKENS_ANSWER'],
|
93 |
+
do_sample=True,
|
94 |
+
temperature=MODEL_CONFIG['TEMPERATURE'],
|
95 |
+
top_k=50,
|
96 |
+
top_p=0.95,
|
97 |
+
eos_token_id=tokenizer.eos_token_id
|
98 |
+
)
|
99 |
+
response_text = tokenizer.decode(outputs[0][len(inputs['input_ids'][0]):], skip_special_tokens=True)
|
100 |
+
|
101 |
+
# On streame la réponse finale
|
102 |
+
for char in response_text:
|
103 |
+
yield stream_chunk(char)
|
104 |
+
await asyncio.sleep(0.005)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
# --- Fin du stream ---
|
107 |
final_chunk = {"id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": MODEL_CONFIG['MODEL_ID'], "choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}]}
|
108 |
yield f"data: {json.dumps(final_chunk)}\n\n"
|
109 |
yield "data: [DONE]\n\n"
|
110 |
|
111 |
+
return StreamingResponse(stream_direct_response(), media_type="text/event-stream")
|
112 |
|
113 |
@app.get("/")
|
114 |
def root():
|
115 |
+
return {"status": "High-Quality Direct Response Agent is online", "model_id": MODEL_CONFIG['MODEL_ID']}
|