Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,135 @@
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
-
from fastapi.responses import
|
|
|
|
|
|
|
|
|
|
|
3 |
import json
|
|
|
4 |
|
5 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
app = FastAPI()
|
7 |
|
8 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
|
|
|
|
11 |
async def list_models():
|
12 |
-
"""Répond à la requête GET /models pour
|
13 |
-
|
14 |
-
return {"object": "list", "data": [{"id": "deepseek-ai/deepseek-coder-1.3b-instruct", "object": "model"}]}
|
15 |
|
16 |
@app.post("/chat/completions")
|
17 |
-
async def
|
18 |
-
"""
|
19 |
-
Endpoint qui ne fait qu'une seule chose :
|
20 |
-
afficher le contenu exact de la requête envoyée par VS Code.
|
21 |
-
"""
|
22 |
-
print("\n\n" + "="*50)
|
23 |
-
print("=== REQUETE POST RECUE SUR /chat/completions ===")
|
24 |
-
|
25 |
-
# On affiche les headers de la requête
|
26 |
-
print("\n--- HEADERS ---")
|
27 |
-
for name, value in request.headers.items():
|
28 |
-
print(f"{name}: {value}")
|
29 |
|
30 |
-
# On
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
@app.get("/")
|
52 |
def root():
|
53 |
-
return {"status": "API en
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
+
from fastapi.responses import StreamingResponse
|
3 |
+
from pydantic import BaseModel, Extra
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
import time
|
7 |
+
import uuid
|
8 |
import json
|
9 |
+
from typing import Optional, List, Union, Dict, Any
|
10 |
|
11 |
+
# --- Configuration ---
|
12 |
+
MODEL_ID = "deepseek-ai/deepseek-coder-1.3b-instruct"
|
13 |
+
DEVICE = "cpu"
|
14 |
+
|
15 |
+
# --- Chargement du modèle ---
|
16 |
+
print(f"Début du chargement du modèle : {MODEL_ID}")
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
MODEL_ID,
|
19 |
+
torch_dtype=torch.bfloat16,
|
20 |
+
device_map=DEVICE
|
21 |
+
)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
23 |
+
print("Modèle et tokenizer chargés avec succès sur le CPU.")
|
24 |
+
|
25 |
+
# --- Création de l'application API ---
|
26 |
app = FastAPI()
|
27 |
|
28 |
+
# --- Modèles de données pour accepter la structure complexe de l'extension ---
|
29 |
+
class ContentPart(BaseModel):
|
30 |
+
type: str
|
31 |
+
text: str
|
32 |
+
|
33 |
+
class ChatMessage(BaseModel):
|
34 |
+
role: str
|
35 |
+
content: Union[str, List[ContentPart]]
|
36 |
+
|
37 |
+
class ChatCompletionRequest(BaseModel):
|
38 |
+
model: Optional[str] = None
|
39 |
+
messages: List[ChatMessage]
|
40 |
+
stream: Optional[bool] = False
|
41 |
+
|
42 |
+
class Config:
|
43 |
+
extra = Extra.ignore
|
44 |
+
|
45 |
+
class ModelData(BaseModel):
|
46 |
+
id: str
|
47 |
+
object: str = "model"
|
48 |
+
owned_by: str = "user"
|
49 |
+
|
50 |
+
class ModelList(BaseModel):
|
51 |
+
object: str = "list"
|
52 |
+
data: List[ModelData]
|
53 |
|
54 |
+
# --- Définition des API ---
|
55 |
+
|
56 |
+
@app.get("/models", response_model=ModelList)
|
57 |
async def list_models():
|
58 |
+
"""Répond à la requête GET /models pour satisfaire l'extension."""
|
59 |
+
return ModelList(data=[ModelData(id=MODEL_ID)])
|
|
|
60 |
|
61 |
@app.post("/chat/completions")
|
62 |
+
async def create_chat_completion(request: ChatCompletionRequest):
|
63 |
+
"""Endpoint principal qui gère la génération de texte en streaming."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
# On extrait le prompt de l'utilisateur de la structure complexe
|
66 |
+
user_prompt = ""
|
67 |
+
last_message = request.messages[-1]
|
68 |
+
if isinstance(last_message.content, list):
|
69 |
+
for part in last_message.content:
|
70 |
+
if part.type == 'text':
|
71 |
+
user_prompt += part.text + "\n"
|
72 |
+
elif isinstance(last_message.content, str):
|
73 |
+
user_prompt = last_message.content
|
74 |
+
|
75 |
+
if not user_prompt:
|
76 |
+
return {"error": "Prompt non trouvé."}
|
77 |
+
|
78 |
+
# Préparation pour le modèle DeepSeek
|
79 |
+
messages_for_model = [{'role': 'user', 'content': user_prompt}]
|
80 |
+
inputs = tokenizer.apply_chat_template(messages_for_model, add_generation_prompt=True, return_tensors="pt").to(DEVICE)
|
81 |
|
82 |
+
# Génération de la réponse complète
|
83 |
+
outputs = model.generate(inputs, max_new_tokens=250, do_sample=True, temperature=0.2, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
84 |
+
response_text = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
85 |
+
|
86 |
+
# Fonction génératrice pour le streaming
|
87 |
+
async def stream_generator():
|
88 |
+
response_id = f"chatcmpl-{uuid.uuid4()}"
|
89 |
+
|
90 |
+
# On envoie la réponse caractère par caractère, au format attendu
|
91 |
+
for char in response_text:
|
92 |
+
chunk = {
|
93 |
+
"id": response_id,
|
94 |
+
"object": "chat.completion.chunk",
|
95 |
+
"created": int(time.time()),
|
96 |
+
"model": MODEL_ID,
|
97 |
+
"choices": [{
|
98 |
+
"index": 0,
|
99 |
+
"delta": {"content": char},
|
100 |
+
"finish_reason": None
|
101 |
+
}]
|
102 |
+
}
|
103 |
+
yield f"data: {json.dumps(chunk)}\n\n"
|
104 |
+
await asyncio.sleep(0.01) # Petite pause pour simuler un flux
|
105 |
+
|
106 |
+
# On envoie le chunk final de fin
|
107 |
+
final_chunk = {
|
108 |
+
"id": response_id,
|
109 |
+
"object": "chat.completion.chunk",
|
110 |
+
"created": int(time.time()),
|
111 |
+
"model": MODEL_ID,
|
112 |
+
"choices": [{
|
113 |
+
"index": 0,
|
114 |
+
"delta": {},
|
115 |
+
"finish_reason": "stop"
|
116 |
+
}]
|
117 |
+
}
|
118 |
+
yield f"data: {json.dumps(final_chunk)}\n\n"
|
119 |
+
|
120 |
+
# On envoie le signal [DONE]
|
121 |
+
yield "data: [DONE]\n\n"
|
122 |
+
|
123 |
+
# Si l'extension demande un stream, on renvoie le générateur
|
124 |
+
if request.stream:
|
125 |
+
return StreamingResponse(stream_generator(), media_type="text/event-stream")
|
126 |
+
else:
|
127 |
+
# Code de secours si le stream n'est pas demandé (peu probable)
|
128 |
+
return {"choices": [{"message": {"role": "assistant", "content": response_text}}]}
|
129 |
|
130 |
@app.get("/")
|
131 |
def root():
|
132 |
+
return {"status": "API compatible OpenAI en ligne (avec streaming)", "model_id": MODEL_ID}
|
133 |
+
|
134 |
+
# On a besoin de asyncio pour la pause dans le stream
|
135 |
+
import asyncio
|