Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -45,14 +45,7 @@ logging.basicConfig(
|
|
45 |
# 2. Model Download Function (CPU only)
|
46 |
# ------------------------------------------------------------------
|
47 |
def download_model_weights(target_dir, repo_id, subdir=None):
|
48 |
-
"""
|
49 |
-
Download model weights to specified directory (CPU operation)
|
50 |
-
|
51 |
-
Args:
|
52 |
-
target_dir (str): Local target directory
|
53 |
-
repo_id (str): HuggingFace repository ID
|
54 |
-
subdir (str): Subdirectory path in the repository (optional)
|
55 |
-
"""
|
56 |
from huggingface_hub import snapshot_download
|
57 |
import shutil
|
58 |
|
@@ -71,7 +64,6 @@ def download_model_weights(target_dir, repo_id, subdir=None):
|
|
71 |
"local_dir_use_symlinks": False,
|
72 |
}
|
73 |
|
74 |
-
# Add token if available
|
75 |
if hf_token:
|
76 |
download_kwargs["token"] = hf_token
|
77 |
|
@@ -125,26 +117,23 @@ def ensure_models_downloaded():
|
|
125 |
ensure_models_downloaded()
|
126 |
|
127 |
# ------------------------------------------------------------------
|
128 |
-
# 4. Qwen
|
129 |
# ------------------------------------------------------------------
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
}
|
136 |
-
|
137 |
-
# Add token if available
|
138 |
-
if hf_token:
|
139 |
-
load_kwargs["token"] = hf_token
|
140 |
-
|
141 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, **load_kwargs)
|
142 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, **load_kwargs)
|
143 |
-
return tokenizer, model
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
**Step 1: Analyze the Core Requirements**
|
150 |
Identify the key elements in the user's prompt. Do not miss any details.
|
@@ -182,33 +171,120 @@ Elaborate on each core requirement to create a rich description.
|
|
182 |
---
|
183 |
**User Prompt:**
|
184 |
{brief_description}"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
)
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
# ------------------------------------------------------------------
|
211 |
-
#
|
212 |
# ------------------------------------------------------------------
|
213 |
@spaces.GPU(duration=300)
|
214 |
def generate_image_interface(
|
@@ -217,102 +293,47 @@ def generate_image_interface(
|
|
217 |
progress=gr.Progress(track_tqdm=True),
|
218 |
):
|
219 |
"""Generate image using FLUX pipeline"""
|
|
|
|
|
|
|
220 |
try:
|
221 |
-
# If no token available, return error message
|
222 |
if not hf_token:
|
223 |
return None, "❌ Error: HF_TOKEN not found. Please configure authentication.", ""
|
224 |
|
225 |
-
# Set device and dtype
|
226 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
227 |
-
torch_dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
|
228 |
-
|
229 |
-
# Initialize FLUX pipeline
|
230 |
-
progress(0.1, desc="Loading FLUX pipeline...")
|
231 |
-
pipeline = FluxPipeline.from_pretrained(
|
232 |
-
DEFAULT_PIPELINE_PATH,
|
233 |
-
torch_dtype=torch_dtype,
|
234 |
-
device_map="balanced" if device.type == "cuda" else None,
|
235 |
-
token=hf_token
|
236 |
-
)
|
237 |
|
238 |
-
#
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
torch_dtype=torch_dtype,
|
246 |
-
device_map="balanced" if device.type == "cuda" else None,
|
247 |
-
token=hf_token
|
248 |
-
)
|
249 |
-
pipeline.transformer = custom_transformer
|
250 |
-
logging.info("Custom transformer weights loaded successfully")
|
251 |
-
except Exception as e:
|
252 |
-
logging.warning(f"Failed to load custom transformer weights: {e}")
|
253 |
-
|
254 |
-
# Process prompt
|
255 |
-
final_prompt = original_prompt
|
256 |
-
if enable_recap:
|
257 |
-
progress(0.5, desc="Processing prompt with Qwen...")
|
258 |
-
qwen_local = "local_weights/Qwen3-8B"
|
259 |
-
if os.path.exists(qwen_local):
|
260 |
-
try:
|
261 |
-
tokenizer, model = create_qwen_agent(qwen_local)
|
262 |
-
final_prompt = recap_prompt(tokenizer, model, original_prompt)
|
263 |
-
logging.info(f"Enhanced prompt: {final_prompt}")
|
264 |
-
# Clean up Qwen model to free memory
|
265 |
-
del tokenizer, model
|
266 |
-
torch.cuda.empty_cache()
|
267 |
-
except Exception as e:
|
268 |
-
logging.warning(f"Qwen processing failed: {e}")
|
269 |
-
final_prompt = original_prompt
|
270 |
-
else:
|
271 |
-
# Fallback to online Qwen model
|
272 |
-
try:
|
273 |
-
tokenizer, model = create_qwen_agent(DEFAULT_QWEN_MODEL_PATH)
|
274 |
-
final_prompt = recap_prompt(tokenizer, model, original_prompt)
|
275 |
-
del tokenizer, model
|
276 |
-
torch.cuda.empty_cache()
|
277 |
-
except Exception as e:
|
278 |
-
logging.warning(f"Online Qwen failed: {e}")
|
279 |
-
final_prompt = original_prompt
|
280 |
-
|
281 |
-
# Generate seed
|
282 |
-
if seed_input == -1:
|
283 |
-
seed = random.randint(0, MAX_SEED)
|
284 |
-
else:
|
285 |
-
seed = int(seed_input)
|
286 |
-
|
287 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
288 |
-
|
289 |
-
# Generate image
|
290 |
-
progress(0.7, desc="Generating image...")
|
291 |
-
with torch.no_grad():
|
292 |
-
result = pipeline(
|
293 |
-
prompt=final_prompt,
|
294 |
-
height=height,
|
295 |
-
width=width,
|
296 |
-
num_inference_steps=num_inference_steps,
|
297 |
-
guidance_scale=guidance_scale,
|
298 |
-
generator=generator,
|
299 |
)
|
300 |
|
301 |
-
|
302 |
|
303 |
-
|
304 |
-
del pipeline
|
305 |
-
torch.cuda.empty_cache()
|
306 |
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
except Exception as e:
|
311 |
logging.error(f"Generation failed: {e}")
|
312 |
return None, f"❌ Generation failed: {str(e)}", ""
|
313 |
|
314 |
# ------------------------------------------------------------------
|
315 |
-
#
|
316 |
# ------------------------------------------------------------------
|
317 |
def create_interface():
|
318 |
"""Create Gradio interface"""
|
@@ -323,8 +344,6 @@ def create_interface():
|
|
323 |
css="""
|
324 |
.main-container { max-width: 1200px; margin: 0 auto; }
|
325 |
.status-box { padding: 10px; border-radius: 5px; margin: 10px 0; }
|
326 |
-
.auth-success { background-color: #d4edda; border: 1px solid #c3e6cb; color: #155724; }
|
327 |
-
.auth-error { background-color: #f8d7da; border: 1px solid #f5c6cb; color: #721c24; }
|
328 |
"""
|
329 |
) as demo:
|
330 |
|
@@ -343,98 +362,47 @@ def create_interface():
|
|
343 |
|
344 |
gr.HTML("""
|
345 |
<div class="status-box">
|
346 |
-
<p><strong>⚠️ First
|
347 |
</div>
|
348 |
""")
|
349 |
-
|
350 |
with gr.Row():
|
351 |
with gr.Column(scale=1):
|
352 |
-
|
353 |
-
|
|
|
|
|
354 |
placeholder="Enter your poster description...",
|
355 |
-
lines=3,
|
356 |
value="A vintage travel poster for Paris, featuring the Eiffel Tower at sunset with warm golden lighting"
|
357 |
)
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
value=True,
|
362 |
info="Use AI to enhance and expand your prompt"
|
363 |
)
|
364 |
|
365 |
with gr.Row():
|
366 |
-
|
367 |
-
|
368 |
-
minimum=256,
|
369 |
-
maximum=MAX_IMAGE_SIZE,
|
370 |
-
value=1024,
|
371 |
-
step=32
|
372 |
-
)
|
373 |
-
width = gr.Slider(
|
374 |
-
label="Width",
|
375 |
-
minimum=256,
|
376 |
-
maximum=MAX_IMAGE_SIZE,
|
377 |
-
value=768,
|
378 |
-
step=32
|
379 |
-
)
|
380 |
-
|
381 |
-
with gr.Row():
|
382 |
-
num_inference_steps = gr.Slider(
|
383 |
-
label="Inference Steps",
|
384 |
-
minimum=1,
|
385 |
-
maximum=50,
|
386 |
-
value=20,
|
387 |
-
step=1
|
388 |
-
)
|
389 |
-
guidance_scale = gr.Slider(
|
390 |
-
label="Guidance Scale",
|
391 |
-
minimum=1.0,
|
392 |
-
maximum=15.0,
|
393 |
-
value=3.5,
|
394 |
-
step=0.1
|
395 |
-
)
|
396 |
-
|
397 |
-
seed_input = gr.Number(
|
398 |
-
label="Seed (-1 for random)",
|
399 |
-
value=-1,
|
400 |
-
precision=0
|
401 |
-
)
|
402 |
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
with gr.Column(scale=1):
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
)
|
421 |
-
|
422 |
-
enhanced_prompt = gr.Textbox(
|
423 |
-
label="Enhanced Prompt",
|
424 |
-
interactive=False,
|
425 |
-
lines=5,
|
426 |
-
info="The final prompt used for generation"
|
427 |
-
)
|
428 |
|
429 |
-
|
430 |
-
generate_btn.click(
|
431 |
-
fn=generate_image_interface,
|
432 |
-
inputs=[
|
433 |
-
original_prompt, enable_recap, height, width,
|
434 |
-
num_inference_steps, guidance_scale, seed_input
|
435 |
-
],
|
436 |
-
outputs=[output_image, status_output, enhanced_prompt]
|
437 |
-
)
|
438 |
|
439 |
# Examples
|
440 |
gr.Examples(
|
@@ -444,13 +412,13 @@ def create_interface():
|
|
444 |
["A minimalist concert poster with bold typography"],
|
445 |
["A vintage advertisement for organic coffee"],
|
446 |
],
|
447 |
-
inputs=[
|
448 |
)
|
449 |
|
450 |
return demo
|
451 |
|
452 |
# ------------------------------------------------------------------
|
453 |
-
#
|
454 |
# ------------------------------------------------------------------
|
455 |
if __name__ == "__main__":
|
456 |
demo = create_interface()
|
@@ -458,4 +426,4 @@ if __name__ == "__main__":
|
|
458 |
server_name="0.0.0.0",
|
459 |
server_port=7860,
|
460 |
show_api=False
|
461 |
-
)
|
|
|
45 |
# 2. Model Download Function (CPU only)
|
46 |
# ------------------------------------------------------------------
|
47 |
def download_model_weights(target_dir, repo_id, subdir=None):
|
48 |
+
"""Download model weights to specified directory (CPU operation)"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
from huggingface_hub import snapshot_download
|
50 |
import shutil
|
51 |
|
|
|
64 |
"local_dir_use_symlinks": False,
|
65 |
}
|
66 |
|
|
|
67 |
if hf_token:
|
68 |
download_kwargs["token"] = hf_token
|
69 |
|
|
|
117 |
ensure_models_downloaded()
|
118 |
|
119 |
# ------------------------------------------------------------------
|
120 |
+
# 4. Qwen Recap Agent (基于你的原始逻辑)
|
121 |
# ------------------------------------------------------------------
|
122 |
+
class QwenRecapAgent:
|
123 |
+
def __init__(self, model_path, max_retries=3, retry_delay=2, device_map="auto"):
|
124 |
+
self.max_retries = max_retries
|
125 |
+
self.retry_delay = retry_delay
|
126 |
+
self.device = device_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path, token=hf_token)
|
129 |
+
model_kwargs = {"torch_dtype": torch.bfloat16, "device_map": device_map if device_map == "auto" else None}
|
130 |
+
if hf_token:
|
131 |
+
model_kwargs["token"] = hf_token
|
132 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
|
133 |
+
if device_map != "auto":
|
134 |
+
self.model.to(device_map)
|
135 |
+
|
136 |
+
self.prompt_template = """You are an expert poster prompt designer. Your task is to rewrite a user's short poster prompt into a detailed and vivid long-format prompt. Follow these steps carefully:
|
137 |
|
138 |
**Step 1: Analyze the Core Requirements**
|
139 |
Identify the key elements in the user's prompt. Do not miss any details.
|
|
|
171 |
---
|
172 |
**User Prompt:**
|
173 |
{brief_description}"""
|
174 |
+
|
175 |
+
def recap_prompt(self, original_prompt):
|
176 |
+
full_prompt = self.prompt_template.format(brief_description=original_prompt)
|
177 |
+
messages = [{"role": "user", "content": full_prompt}]
|
178 |
+
try:
|
179 |
+
text = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=False)
|
180 |
+
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
|
181 |
+
|
182 |
+
with torch.no_grad():
|
183 |
+
generated_ids = self.model.generate(**model_inputs, max_new_tokens=1024, temperature=0.6)
|
184 |
+
|
185 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
186 |
+
full_response = self.tokenizer.decode(output_ids, skip_special_tokens=True)
|
187 |
+
final_answer = self._extract_final_answer(full_response)
|
188 |
+
|
189 |
+
if final_answer:
|
190 |
+
return final_answer.strip()
|
191 |
+
|
192 |
+
logging.info("Qwen returned an empty answer. Using original prompt.")
|
193 |
+
return original_prompt
|
194 |
+
except Exception as e:
|
195 |
+
logging.error(f"Qwen recap failed: {e}. Using original prompt.")
|
196 |
+
return original_prompt
|
197 |
|
198 |
+
def _extract_final_answer(self, full_response):
|
199 |
+
if "</think>" in full_response:
|
200 |
+
return full_response.split("</think>")[-1].strip()
|
201 |
+
if "<think>" not in full_response:
|
202 |
+
return full_response.strip()
|
203 |
+
return None
|
204 |
+
|
205 |
+
# ------------------------------------------------------------------
|
206 |
+
# 5. Poster Generator Class (基于你的原始逻辑,但加上缓存)
|
207 |
+
# ------------------------------------------------------------------
|
208 |
+
class PosterGenerator:
|
209 |
+
def __init__(self, pipeline_path, qwen_model_path, custom_weights_path, device):
|
210 |
+
self.device = device
|
211 |
+
self.pipeline_path = pipeline_path
|
212 |
+
self.qwen_model_path = qwen_model_path
|
213 |
+
self.custom_weights_path = custom_weights_path
|
214 |
|
215 |
+
# 缓存变量
|
216 |
+
self.qwen_agent = None
|
217 |
+
self.pipeline = None
|
218 |
+
|
219 |
+
def _load_qwen_agent(self):
|
220 |
+
if self.qwen_agent is None:
|
221 |
+
if not self.qwen_model_path:
|
222 |
+
return None
|
223 |
+
|
224 |
+
# 检查本地路径
|
225 |
+
qwen_local = "local_weights/Qwen3-8B"
|
226 |
+
model_path = qwen_local if os.path.exists(qwen_local) else self.qwen_model_path
|
227 |
+
|
228 |
+
logging.info(f"Loading Qwen agent from {model_path}")
|
229 |
+
self.qwen_agent = QwenRecapAgent(model_path=model_path, device_map=str(self.device))
|
230 |
+
return self.qwen_agent
|
231 |
+
|
232 |
+
def _load_flux_pipeline(self):
|
233 |
+
if self.pipeline is None:
|
234 |
+
logging.info("Loading FLUX pipeline...")
|
235 |
+
self.pipeline = FluxPipeline.from_pretrained(
|
236 |
+
self.pipeline_path,
|
237 |
+
torch_dtype=torch.bfloat16,
|
238 |
+
token=hf_token
|
239 |
)
|
240 |
+
|
241 |
+
# 加载自定义权重
|
242 |
+
custom_weights_local = "local_weights/PosterCraft-v1_RL"
|
243 |
+
if os.path.exists(custom_weights_local):
|
244 |
+
logging.info(f"Loading custom Transformer from directory: {custom_weights_local}")
|
245 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
246 |
+
custom_weights_local,
|
247 |
+
torch_dtype=torch.bfloat16,
|
248 |
+
token=hf_token
|
249 |
+
)
|
250 |
+
self.pipeline.transformer = transformer
|
251 |
+
elif self.custom_weights_path and os.path.exists(self.custom_weights_path):
|
252 |
+
logging.info(f"Loading custom Transformer from directory: {self.custom_weights_path}")
|
253 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
254 |
+
self.custom_weights_path,
|
255 |
+
torch_dtype=torch.bfloat16,
|
256 |
+
token=hf_token
|
257 |
+
)
|
258 |
+
self.pipeline.transformer = transformer
|
259 |
+
|
260 |
+
self.pipeline.to(self.device)
|
261 |
+
return self.pipeline
|
262 |
+
|
263 |
+
def generate(self, prompt, enable_recap, **kwargs):
|
264 |
+
final_prompt = prompt
|
265 |
+
if enable_recap:
|
266 |
+
qwen_agent = self._load_qwen_agent()
|
267 |
+
if not qwen_agent:
|
268 |
+
raise gr.Error("Recap is enabled, but the recap model is not available. Check model path.")
|
269 |
+
final_prompt = qwen_agent.recap_prompt(prompt)
|
270 |
+
|
271 |
+
pipeline = self._load_flux_pipeline()
|
272 |
+
generator = torch.Generator(device=self.device).manual_seed(kwargs['seed'])
|
273 |
|
274 |
+
with torch.inference_mode():
|
275 |
+
image = pipeline(
|
276 |
+
prompt=final_prompt,
|
277 |
+
generator=generator,
|
278 |
+
num_inference_steps=kwargs['num_inference_steps'],
|
279 |
+
guidance_scale=kwargs['guidance_scale'],
|
280 |
+
width=kwargs['width'],
|
281 |
+
height=kwargs['height']
|
282 |
+
).images[0]
|
283 |
+
|
284 |
+
return image, final_prompt
|
285 |
|
286 |
# ------------------------------------------------------------------
|
287 |
+
# 6. Main Generation Function (GPU) - 保持你的原始逻辑
|
288 |
# ------------------------------------------------------------------
|
289 |
@spaces.GPU(duration=300)
|
290 |
def generate_image_interface(
|
|
|
293 |
progress=gr.Progress(track_tqdm=True),
|
294 |
):
|
295 |
"""Generate image using FLUX pipeline"""
|
296 |
+
if not original_prompt or not original_prompt.strip():
|
297 |
+
return None, "❌ Prompt cannot be empty!", ""
|
298 |
+
|
299 |
try:
|
|
|
300 |
if not hf_token:
|
301 |
return None, "❌ Error: HF_TOKEN not found. Please configure authentication.", ""
|
302 |
|
|
|
303 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
+
# 全局生成器实例
|
306 |
+
if not hasattr(generate_image_interface, 'generator'):
|
307 |
+
generate_image_interface.generator = PosterGenerator(
|
308 |
+
pipeline_path=DEFAULT_PIPELINE_PATH,
|
309 |
+
qwen_model_path=DEFAULT_QWEN_MODEL_PATH,
|
310 |
+
custom_weights_path=DEFAULT_CUSTOM_WEIGHTS_PATH,
|
311 |
+
device=device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
)
|
313 |
|
314 |
+
actual_seed = int(seed_input) if seed_input and seed_input != -1 else random.randint(1, 2**32 - 1)
|
315 |
|
316 |
+
progress(0.1, desc="Starting generation...")
|
|
|
|
|
317 |
|
318 |
+
image, final_prompt = generate_image_interface.generator.generate(
|
319 |
+
prompt=original_prompt,
|
320 |
+
enable_recap=enable_recap,
|
321 |
+
height=int(height),
|
322 |
+
width=int(width),
|
323 |
+
num_inference_steps=int(num_inference_steps),
|
324 |
+
guidance_scale=float(guidance_scale),
|
325 |
+
seed=actual_seed
|
326 |
+
)
|
327 |
+
|
328 |
+
status_log = f"✅ Generation complete! Seed: {actual_seed}"
|
329 |
+
return image, status_log, final_prompt
|
330 |
|
331 |
except Exception as e:
|
332 |
logging.error(f"Generation failed: {e}")
|
333 |
return None, f"❌ Generation failed: {str(e)}", ""
|
334 |
|
335 |
# ------------------------------------------------------------------
|
336 |
+
# 7. Gradio Interface (保持你的原始风格)
|
337 |
# ------------------------------------------------------------------
|
338 |
def create_interface():
|
339 |
"""Create Gradio interface"""
|
|
|
344 |
css="""
|
345 |
.main-container { max-width: 1200px; margin: 0 auto; }
|
346 |
.status-box { padding: 10px; border-radius: 5px; margin: 10px 0; }
|
|
|
|
|
347 |
"""
|
348 |
) as demo:
|
349 |
|
|
|
362 |
|
363 |
gr.HTML("""
|
364 |
<div class="status-box">
|
365 |
+
<p><strong>⚠️ First generation requires model loading (5-10 minutes). Subsequent generations are much faster!</strong></p>
|
366 |
</div>
|
367 |
""")
|
368 |
+
|
369 |
with gr.Row():
|
370 |
with gr.Column(scale=1):
|
371 |
+
gr.Markdown("### 1. Configuration")
|
372 |
+
prompt_input = gr.Textbox(
|
373 |
+
label="Poster Prompt",
|
374 |
+
lines=3,
|
375 |
placeholder="Enter your poster description...",
|
|
|
376 |
value="A vintage travel poster for Paris, featuring the Eiffel Tower at sunset with warm golden lighting"
|
377 |
)
|
378 |
+
enable_recap_checkbox = gr.Checkbox(
|
379 |
+
label="Enable Prompt Enhancement (Qwen3-8B)",
|
380 |
+
value=True,
|
|
|
381 |
info="Use AI to enhance and expand your prompt"
|
382 |
)
|
383 |
|
384 |
with gr.Row():
|
385 |
+
width_input = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, value=768, step=32)
|
386 |
+
height_input = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, value=1024, step=32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
|
388 |
+
num_inference_steps_input = gr.Slider(label="Inference Steps", minimum=1, maximum=100, value=20, step=1)
|
389 |
+
guidance_scale_input = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=20.0, value=3.5, step=0.1)
|
390 |
+
seed_number_input = gr.Number(label="Seed (-1 for random)", value=-1, minimum=-1, step=1)
|
391 |
+
generate_button = gr.Button("🎨 Generate Poster", variant="primary", size="lg")
|
392 |
+
|
|
|
393 |
with gr.Column(scale=1):
|
394 |
+
gr.Markdown("### 2. Results")
|
395 |
+
image_output = gr.Image(label="Generated Poster", type="pil", height=600)
|
396 |
+
status_output = gr.Textbox(label="Generation Status", lines=2, interactive=False)
|
397 |
+
recapped_prompt_output = gr.Textbox(label="Enhanced Prompt", lines=5, interactive=False, info="The final prompt used for generation")
|
398 |
+
|
399 |
+
inputs_list = [
|
400 |
+
prompt_input, enable_recap_checkbox, height_input, width_input,
|
401 |
+
num_inference_steps_input, guidance_scale_input, seed_number_input
|
402 |
+
]
|
403 |
+
outputs_list = [image_output, status_output, recapped_prompt_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
|
405 |
+
generate_button.click(fn=generate_image_interface, inputs=inputs_list, outputs=outputs_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
# Examples
|
408 |
gr.Examples(
|
|
|
412 |
["A minimalist concert poster with bold typography"],
|
413 |
["A vintage advertisement for organic coffee"],
|
414 |
],
|
415 |
+
inputs=[prompt_input]
|
416 |
)
|
417 |
|
418 |
return demo
|
419 |
|
420 |
# ------------------------------------------------------------------
|
421 |
+
# 8. Launch Application
|
422 |
# ------------------------------------------------------------------
|
423 |
if __name__ == "__main__":
|
424 |
demo = create_interface()
|
|
|
426 |
server_name="0.0.0.0",
|
427 |
server_port=7860,
|
428 |
show_api=False
|
429 |
+
)
|