0xgaryy commited on
Commit
873cdc6
·
1 Parent(s): ef2262e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -20
app.py CHANGED
@@ -49,9 +49,17 @@ def predict_emotions(sentence):
49
  result = le_departure.inverse_transform(
50
  np.argmax(model.predict(sentence), axis=-1))[0]
51
  proba = np.max(model.predict(sentence))
52
- print(result)
53
- print(proba)
54
- return result, proba
 
 
 
 
 
 
 
 
55
 
56
 
57
  def sentence_cleaning(sentence):
@@ -70,18 +78,7 @@ def sentence_cleaning(sentence):
70
 
71
 
72
  def main():
73
- emoji = { "anger":"😠",
74
- "disgust":"🤮",
75
- "fear":"😨😱",
76
- "happy":"🤗",
77
- "joy":"😂",
78
- "neutral":"😐",
79
- "sad":"😔",
80
- "sadness":"😔",
81
- "shame":"😳",
82
- "surprise":"😮"
83
- }
84
- st.title("🤮😨Emotion Classifier😱😂")
85
  menu = ["Home", "Monitor"]
86
  choice = st.sidebar.selectbox("Menu", menu)
87
  if choice == "Home":
@@ -92,20 +89,26 @@ def main():
92
  submit_text = st.form_submit_button(label='Submit')
93
 
94
  if submit_text:
95
- col1, col2 = st.columns(2)
96
 
97
  # Apply Fxn Here
98
- res, proba = predict_emotions(raw_text)
99
 
100
  with col1:
101
  st.success("Original Text")
102
  st.write(raw_text)
103
 
104
  st.success("Prediction")
105
- st.write("{}:{}".format(res, emoji[res]))
106
  st.write("Confidence:{}".format(proba))
107
-
108
-
 
 
 
 
 
 
109
 
110
  else:
111
  st.subheader("About")
 
49
  result = le_departure.inverse_transform(
50
  np.argmax(model.predict(sentence), axis=-1))[0]
51
  proba = np.max(model.predict(sentence))
52
+ print()
53
+
54
+ return result, proba, get_all_result(model.predict(sentence))
55
+
56
+
57
+ def get_all_result(prediction):
58
+ dict = {}
59
+ for element in prediction:
60
+ for i in range(0, len(element)):
61
+ dict[element[i]] = le_departure.inverse_transform([i])
62
+ return dict
63
 
64
 
65
  def sentence_cleaning(sentence):
 
78
 
79
 
80
  def main():
81
+ st.title("Emotion Classifier")
 
 
 
 
 
 
 
 
 
 
 
82
  menu = ["Home", "Monitor"]
83
  choice = st.sidebar.selectbox("Menu", menu)
84
  if choice == "Home":
 
89
  submit_text = st.form_submit_button(label='Submit')
90
 
91
  if submit_text:
92
+ col1, col2 = st.beta_columns(2)
93
 
94
  # Apply Fxn Here
95
+ res, proba, total_result = predict_emotions(raw_text)
96
 
97
  with col1:
98
  st.success("Original Text")
99
  st.write(raw_text)
100
 
101
  st.success("Prediction")
102
+ st.write("{}:{}".format(res, proba))
103
  st.write("Confidence:{}".format(proba))
104
+ print(total_result.keys())
105
+ print(total_result.values())
106
+
107
+ source = pd.DataFrame({'Proba': list(total_result.keys()), 'Emotion': list(total_result.values())})
108
+
109
+ fig = alt.Chart(source).mark_bar().encode(x='Emotion',y='Proba',color='Emotion')
110
+ st.altair_chart(fig,use_container_width=True)
111
+
112
 
113
  else:
114
  st.subheader("About")