Spaces:
Runtime error
Runtime error
File size: 7,814 Bytes
508a685 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import pandas as pd
import pickle as pkl
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.dummy import DummyClassifier
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import Perceptron
from numpy import reshape
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import Perceptron
from sklearn.dummy import DummyClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn import svm
import gradio as gr
class NLP:
def __init__(self) -> None:
self.__path = "models/"
self.__exec = {"Perceptron": [self.perceptron_pol_eval, self.perceptron_rat_eval], "K-Neighbors": [self.kneighbors_pol_eval, self.kneighbors_rat_eval], "Naive Bayes": [self.NB_pol_eval, self.NB_rat_eval], "SVM": [self.SVM_pol_eval, self.SVM_rat_eval], "Random Forest": [self.RF_pol_eval, self.RF_rat_eval], "NN (MLP)": [self.MLP_pol_eval, self.MLP_rat_eval], "Dummy (Baseline)": [self.Dummy_pol_eval, self.Dummy_rat_eval]}
self.__get_vocabulary()
self.__vectorizer_pol = pkl.load(open(self.__path + "vectorizer_pol.pkl", 'rb'))
self.__vectorizer_rat = pkl.load(open(self.__path + "vectorizer_rat.pkl", 'rb'))
self.__X_pol_test = pkl.load(open(self.__path + "X_pol_test.pkl", 'rb'))
self.__y_pol_test = pkl.load(open(self.__path + "y_pol_test.pkl", 'rb'))
self.__X_rat_test = pkl.load(open(self.__path + "X_rat_test.pkl", 'rb'))
self.__y_rat_test = pkl.load(open(self.__path + "y_rat_test.pkl", 'rb'))
self.__get_models()
def __get_models(self):
self.__perceptron_pol = pkl.load(open(self.__path + "perceptron_pol.pkl", 'rb'))
self.__perceptron_pol_score = self.__perceptron_pol.score(self.__X_pol_test, self.__y_pol_test)
self.__perceptron_rat = pkl.load(open(self.__path + "perceptron_rat.pkl", 'rb'))
self.__perceptron_rat_score = self.__perceptron_rat.score(self.__X_rat_test, self.__y_rat_test)
self.__rf_pol = pkl.load(open(self.__path + "rf_pol.pkl", 'rb'))
self.__rf_pol_score = self.__rf_pol.score(self.__X_pol_test, self.__y_pol_test)
self.__rf_rat = pkl.load(open(self.__path + "rf_rat.pkl", 'rb'))
self.__rf_rat_score = self.__rf_rat.score(self.__X_rat_test, self.__y_rat_test)
self.__nb_pol = pkl.load(open(self.__path + "nb_pol.pkl", 'rb'))
self.__nb_pol_score = self.__nb_pol.score(self.__X_pol_test, self.__y_pol_test)
self.__nb_rat = pkl.load(open(self.__path + "nb_rat.pkl", 'rb'))
self.__nb_rat_score = self.__nb_rat.score(self.__X_rat_test, self.__y_rat_test)
# self.__svm_pol = pkl.load(open(self.__path + "svm_pol.pkl", 'rb'))
# self.__svm_pol_score = self.__svm_pol.score(self.__X_pol_test, self.__y_pol_test)
# self.__svm_rat = pkl.load(open(self.__path + "svm_rat.pkl", 'rb'))
# self.__svm_rat_score = self.__svm_rat.score(self.__X_rat_test, self.__y_rat_test)
self.__k_neighbors_pol = pkl.load(open(self.__path + "kneighbors_pol.pkl", 'rb'))
self.__k_neighbors_pol_score = self.__k_neighbors_pol.score(self.__X_pol_test, self.__y_pol_test)
self.__k_neighbors_rat = pkl.load(open(self.__path + "kneighbors_rat.pkl", 'rb'))
self.__k_neighbors_rat_score = self.__k_neighbors_rat.score(self.__X_rat_test, self.__y_rat_test)
self.__dummy_pol = pkl.load(open(self.__path + "dummy_pol.pkl", 'rb'))
self.__dummy_pol_score = self.__dummy_pol.score(self.__X_pol_test, self.__y_pol_test)
self.__dummy_rat = pkl.load(open(self.__path + "dummy_rat.pkl", 'rb'))
self.__dummy_rat_score = self.__dummy_rat.score(self.__X_rat_test, self.__y_rat_test))
self.__clf_pol = pkl.load(open(self.__path + "clf_pol.pkl", 'rb'))
self.__clf_pol_score = self.__clf_pol.score(self.__X_pol_test, self.__y_pol_test)
self.__clf_rat = pkl.load(open(self.__path + "clf_rat.pkl", 'rb'))
self.__clf_rat_score = self.__clf_rat.score(self.__X_rat_test, self.__y_rat_test)
def perceptron_pol_eval(self, evalu):
tmp = self.__perceptron_pol.predict(evalu)
return([[tmp, 1-tmp]], str(self.__perceptron_pol_score))
def perceptron_rat_eval(self, evalu):
tmp = self.__perceptron_rat.predict(evalu)
if (tmp == 5):
tmp = [[0, 0, 0, 1]]
elif (tmp == 4):
tmp = [[0, 0, 1, 0]]
elif (tmp == 2):
tmp = [[0, 1, 0, 0]]
else:
tmp = [[1, 0, 0, 0]]
return(tmp, str(self.__perceptron_rat_score))
def kneighbors_pol_eval(self, evalu):
return(self.__k_neighbors_pol.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
def kneighbors_rat_eval(self, evalu):
return(self.__k_neighbors_rat.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
def NB_pol_eval(self, evalu):
return(self.__nb_pol.predict_proba(evalu).tolist(), str(self.__nb_pol_score))
def NB_rat_eval(self, evalu):
return(self.__nb_rat.predict_proba(evalu).tolist(), str(self.__nb_rat_score))
def SVM_pol_eval(self, evalu):
return(self.__svm_pol.predict_proba(evalu).tolist(), str(self.__svm_pol_score))
def SVM_rat_eval(self, evalu):
return(self.__svm_rat.predict_proba(evalu).tolist(), str(self.__svm_rat_score))
def RF_pol_eval(self, evalu):
return(self.__rf_pol.predict_proba(evalu).tolist(), str(self.__rf_pol_score))
def RF_rat_eval(self, evalu):
return(self.__rf_rat.predict_proba(evalu).tolist(), str(self.__rf_rat_score))
def MLP_pol_eval(self, evalu):
return(self.__clf_pol.predict_proba(evalu).tolist(), str(self.__clf_pol_score))
def MLP_rat_eval(self, evalu):
return(self.__clf_rat.predict_proba(evalu).tolist(), str(self.__clf_rat_score))
def Dummy_pol_eval(self, evalu):
return(self.__dummy_pol.predict_proba(evalu).tolist(), self.__dummy_pol_score)
def Dummy_rat_eval(self, evalu):
tmp = self.__dummy_rat.predict_proba(evalu).tolist()
return(tmp, self.__dummy_rat.score)
def __get_vocabulary(self):
with open("dataset/vocabulary_polarity.txt", "r") as o:
res = o.read()
self.__vocabulary = res.split("\n")
self.__vocabulary = list(set(self.__vocabulary))
def Tokenizer(self, text):
tmp = self.__vectorizer_pol.transform([text])
tmp = tmp.toarray()
return (tmp)
def Manage(self, model, Dataset, review):
if (Dataset == "Binary"):
percent, score = self.__exec[model][0](review)
res = pd.DataFrame({'Positive': percent[0][0], 'Negative': percent[0][1]}, index=["Prediction"])
else:
percent, score = self.__exec[model][1](review)
res = pd.DataFrame({'Rated 1/5': percent[0][0], 'Rated 2/5': percent[0][1], 'Rated 4/5': percent[0][2], 'Rated 5/5': percent[0][3]}, index=["Prediction"])
return (res, f"Model: {model}\nDataset: {Dataset}\nAccuracy: {str(float(score)*100)}")
if __name__ == "__main__":
class Execution:
def __init__(self):
self.__n = NLP()
def greet(self, Model, Dataset, Review):
return(self.__n.Manage(Model, Dataset, self.__n.Tokenizer(Review)))
e = Execution()
gr.Interface(e.greet, [gr.inputs.Dropdown(["Perceptron", "K-Neighbors", "Naive Bayes", "SVM", "Random Forest", "NN (MLP)", "Dummy (Baseline)"]), gr.inputs.Dropdown(["Binary", "Rating"]), "text"], [gr.outputs.Dataframe(), "text"]).launch() |