|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
from tensorflow import keras |
|
|
|
model = keras.models.load_model('model.h5') |
|
classes = ['Mild_Demented', 'Moderate_Demented', 'Non_Demented', 'Very_Mild_Demented'] |
|
|
|
def analyse(image): |
|
data = image.reshape((1, 128, 128, 3)) |
|
predict = model.predict(data)[0] |
|
return classes[np.argmax(predict)] |
|
|
|
iface = gradio.Interface( |
|
analyse, |
|
gradio.inputs.Image(shape=(128,128)), |
|
"text", |
|
examples=[ |
|
'Dataset/Non_Demented/non.jpg', |
|
'Dataset/Moderate_Demented/moderate.jpg', |
|
'Dataset/Mild_Demented/mild.jpg', |
|
'Dataset/Very_Mild_Demented/verymild.jpg'], |
|
) |
|
iface.launch() |