Louis VAUBOURDOLLE commited on
Commit
df45c31
·
1 Parent(s): d0ddf11

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -53
app.py CHANGED
@@ -1,65 +1,19 @@
 
1
  import gradio as gr
2
  import numpy as np
3
  import pandas as pd
4
- from sklearn.model_selection import train_test_split
5
- from sklearn.preprocessing import StandardScaler
6
- from sklearn.linear_model import LogisticRegression
7
- from sklearn.pipeline import Pipeline
8
- from sklearn.metrics import accuracy_score
9
- import time
10
- import paho.mqtt.client as mqtt
11
 
12
- df = pd.read_csv("./Churn_Modelling.csv")
13
- df.drop(["RowNumber","CustomerId","Surname"], axis=1, inplace=True)
14
- df.head()
15
 
16
- df.Balance.plot(kind="hist", figsize=(10,6))
17
- df.Balance = np.where(df.Balance==0, 0, 1)
18
- df.Balance.value_counts()
19
- df.Age.plot(kind="hist", figsize=(10,6))
20
-
21
- X = df.drop(["Exited","Geography","Gender"], axis=1)
22
- y = df["Exited"]
23
- X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
24
-
25
- pl = Pipeline([
26
- ("scale", StandardScaler()),
27
- ("logreg", LogisticRegression())
28
- ])
29
- pl.fit(X_train, y_train)
30
- y_train_pred = pl.predict(X_train)
31
- y_test_pred = pl.predict(X_test)
32
-
33
- def sentence_builder(credit, age, tenure, balance, nb_prods, has_card, active, est_salary):
34
- data = [{
35
- "CreditScore": credit,
36
- "Age": age,
37
- "Tenure": tenure,
38
- "Balance": balance,
39
- "NumOfProducts": nb_prods,
40
- "HasCrCard": has_card,
41
- "IsActiveMember": active,
42
- "EstimatedSalary": est_salary,
43
- }]
44
- df = pd.json_normalize(data)
45
- return bool(pl.predict(df)[0])
46
 
47
  iface = gr.Interface(
48
- sentence_builder,
49
- [
50
- gr.inputs.Slider(0, 10000, label='credit'),
51
- gr.inputs.Slider(0, 100, label='age'),
52
- gr.inputs.Slider(0, 10, label='tenure'),
53
- gr.inputs.Slider(0, 10000, label='balance'),
54
- gr.inputs.Slider(0, 10, label='number of products'),
55
- gr.inputs.Checkbox(label="credit card"),
56
- gr.inputs.Checkbox(label="active"),
57
- gr.inputs.Slider(0, 200000, label='estimated salary'),
58
- ],
59
  "text",
60
  examples=[
61
- [619, 42, 2, 0, 1, 1, 1, 101348], # Returns False 0
62
- [608, 41, 1, 83807, 1, 0, 1, 112542], # Returns True 1
63
  ],
64
  )
65
  iface.launch()
 
1
+ import keras
2
  import gradio as gr
3
  import numpy as np
4
  import pandas as pd
 
 
 
 
 
 
 
5
 
6
+ model = keras.models.load_model('model.h5')
 
 
7
 
8
+ def analyse(image):
9
+ data = image.reshape((1, 128, 128, 3))
10
+ return model.predict(data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  iface = gr.Interface(
13
+ analyse,
14
+ gr.inputs.Image(shape=(128,128)),
 
 
 
 
 
 
 
 
 
15
  "text",
16
  examples=[
 
 
17
  ],
18
  )
19
  iface.launch()