File size: 20,179 Bytes
c290e43 f29baad f5c41f4 8d16bbc f5c41f4 c290e43 6b1735b 38edf4a 6b1735b 38edf4a 6b1735b 38edf4a 6b1735b 38edf4a 6b1735b 38edf4a 6b1735b ec700e0 38edf4a 6b1735b 2e9811d f5c41f4 2e9811d f29baad f5c41f4 d8bdd06 f5c41f4 d8bdd06 f5c41f4 cfeedf3 f5c41f4 6b1735b f5c41f4 cfeedf3 d8bdd06 cfeedf3 f5c41f4 cfeedf3 f5c41f4 6b1735b cfeedf3 f5c41f4 6b1735b f5c41f4 6b1735b f5c41f4 6b1735b f5c41f4 d8bdd06 2e9811d 6b1735b cfeedf3 f5c41f4 6b1735b 8d16bbc cfeedf3 f5c41f4 cfeedf3 6b1735b cfeedf3 8d16bbc cfeedf3 6b1735b cfeedf3 5759851 cfeedf3 2e9811d 8d16bbc 2e9811d f5c41f4 8d16bbc 2e9811d 6b1735b f5c41f4 2e9811d 5759851 2e9811d 5759851 6b1735b f5c41f4 6b1735b 2e9811d f5c41f4 2e9811d ec700e0 d8bdd06 6b1735b ec700e0 f5c41f4 6b1735b f5c41f4 6b1735b f5c41f4 6b1735b f5c41f4 cfeedf3 f5c41f4 2e9811d cfeedf3 6b1735b 2e9811d f5c41f4 6b1735b f5c41f4 6b1735b f5c41f4 6b1735b 8d16bbc f5c41f4 6b1735b f5c41f4 6b1735b f5c41f4 6b1735b f5c41f4 6b1735b f5c41f4 6b1735b 8d16bbc 2e9811d 8d16bbc cfeedf3 2e9811d f5c41f4 d8bdd06 8d16bbc 2e9811d cfeedf3 8d16bbc 4390781 2e9811d 8d16bbc c290e43 8d16bbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
import gradio as gr
import os
from PIL import Image, ImageDraw, ImageFont, ImageEnhance
import requests
import io
import json
# Définition des styles
# Styles optimisés et stabilisés
ART_STYLES = {
"Art Moderne": {
"prompt_prefix": "modern art style poster, professional design",
"text_style": "modern clean typography, geometric style",
"guidance": 9.0, # Réduit pour plus de stabilité
"steps": 55,
"negative_prompt": "traditional, photorealistic, cluttered, busy design"
},
"Neo Vintage": {
"prompt_prefix": "vintage style advertising poster, retro design",
"text_style": "retro typography, vintage lettering",
"guidance": 8.5,
"steps": 50,
"negative_prompt": "modern, digital, contemporary style"
},
"Pop Art": {
"prompt_prefix": "pop art style poster, bold design",
"text_style": "bold typography, comic book style text",
"guidance": 8.0,
"steps": 45,
"negative_prompt": "subtle, realistic, traditional art"
},
"Minimaliste": {
"prompt_prefix": "minimalist design poster, clean composition",
"text_style": "clean minimal typography, simple text layout",
"guidance": 7.5,
"steps": 40,
"negative_prompt": "complex, detailed, ornate, busy"
}
}
ART_STYLES = {
# Styles Photoréalistes
"Photo HDR": {
"prompt_prefix": "ultra realistic photograph, professional HDR photography, extremely detailed, 8k uhd",
"text_style": "photographic text overlay",
"guidance": 9.0,
"steps": 60,
"negative_prompt": "illustration, painting, drawing, cartoon, blurry, low quality, artistic"
},
"Portrait Studio": {
"prompt_prefix": "professional studio photography, high end photoshoot, perfect lighting, sharp focus",
"text_style": "elegant text overlay, magazine style typography",
"guidance": 8.5,
"steps": 55,
"negative_prompt": "illustration, drawing, cartoon, painting, low quality"
},
"Nature Pro": {
"prompt_prefix": "professional nature photography, national geographic style, perfect natural lighting",
"text_style": "outdoor photography text style",
"guidance": 8.0,
"steps": 50,
"negative_prompt": "illustration, artificial, cartoon, painting"
},
"Urban Photo": {
"prompt_prefix": "professional urban photography, architectural photo, perfect city shot",
"text_style": "modern photographic typography",
"guidance": 8.5,
"steps": 55,
"negative_prompt": "illustration, drawing, cartoon, unrealistic"
},
# Styles Artistiques existants
"Art Moderne": {
"prompt_prefix": "modern art style poster, professional design",
"text_style": "modern clean typography, geometric style",
"guidance": 9.0,
"steps": 55,
"negative_prompt": "photorealistic, traditional, cluttered"
},
"Neo Vintage": {
"prompt_prefix": "vintage style advertising poster, retro design",
"text_style": "retro typography, vintage lettering",
"guidance": 8.5,
"steps": 50,
"negative_prompt": "modern, photographic, contemporary"
},
# ... autres styles existants ...
}
# Paramètres photo optimisés
PHOTO_PARAMS = {
"HDR": {
"exposure_strength": 1.2,
"contrast": 1.1,
"saturation": 1.05
},
"Portrait": {
"skin_softening": 0.8,
"bokeh_strength": 0.7,
"lighting": "studio"
},
"Nature": {
"sharpness": 1.2,
"vibrance": 1.1,
"detail_enhancement": 1.15
}
}
def enhance_photo_prompt(subject, style, photo_type="HDR"):
"""Améliore le prompt pour un rendu plus photoréaliste"""
base_prompt = f"highly detailed photograph of {subject}, {ART_STYLES[style]['prompt_prefix']}"
photo_enhancements = {
"HDR": ", ultra high resolution photograph, perfect exposure, dramatic lighting, professional color grading",
"Portrait": ", professional portrait photography, perfect skin texture, studio lighting setup, shallow depth of field",
"Nature": ", sharp nature photography, perfect natural lighting, high detail macro shot, professional outdoor photography",
"Urban": ", professional architectural photography, perfect perspective, golden hour lighting, urban landscape"
}
return base_prompt + photo_enhancements.get(photo_type, photo_enhancements["HDR"])
def generate_image(format_size, orientation, subject, style, text_effect, collection, title, subtitle, quality, creativity):
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_TOKEN')}"}
try:
width, height = (768, 1024) if format_size == "A4" else (1024, 1024)
if orientation == "Paysage":
width, height = height, width
# Détection du style photo et optimisation du prompt
is_photo_style = any(photo_style in style for photo_style in ["Photo", "Portrait", "Nature Pro", "Urban Photo"])
if is_photo_style:
prompt = enhance_photo_prompt(subject, style)
guidance_scale = 8.0 # Optimisé pour le photoréalisme
steps = 55
else:
prompt = f"{ART_STYLES[style]['prompt_prefix']}, {subject}"
guidance_scale = ART_STYLES[style]['guidance']
steps = ART_STYLES[style]['steps']
if text_effect != "Standard":
prompt += f", {TEXT_EFFECTS[text_effect]['prompt_suffix']}"
if title:
prompt += f", with text '{title}'"
payload = {
"inputs": prompt,
"parameters": {
"negative_prompt": ART_STYLES[style]['negative_prompt'],
"num_inference_steps": min(int(steps * (quality/100)), 60),
"guidance_scale": min(guidance_scale * (creativity/10), 10.0),
"width": width,
"height": height
}
}
print(f"Prompt: {prompt}") # Debug
print(f"Paramètres: {payload}") # Debug
response = requests.post(API_URL, headers=headers, json=payload, timeout=30)
if response.status_code == 200:
image = Image.open(io.BytesIO(response.content))
# Post-traitement pour styles photo
if is_photo_style:
image = enhance_photo(image, style)
return image, "✨ Photo créée avec succès!"
else:
return None, f"⚠️ Erreur {response.status_code}: Essayez de modifier les paramètres"
except Exception as e:
print(f"Exception: {str(e)}")
return None, f"⚠️ Erreur: {str(e)}"
def enhance_photo(image, style):
"""Améliore la photo selon le style"""
try:
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.1)
enhancer = ImageEnhance.Color(image)
image = enhancer.enhance(1.05)
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.15)
return image
except:
return image
# Effets de texte stabilisés
TEXT_EFFECTS = {
"Standard": {
"prompt_suffix": "with clear readable text",
"text_params": {"weight": 1.0}
},
"Graffiti": {
"prompt_suffix": "with urban graffiti style text",
"text_params": {"weight": 0.8}
},
"Néon": {
"prompt_suffix": "with glowing neon text",
"text_params": {"weight": 0.9}
},
"3D": {
"prompt_suffix": "with 3D style text",
"text_params": {"weight": 0.85}
}
}
# Collections optimisées
THEME_COLLECTIONS = {
"Tech": {
"prompts": ["technology inspired", "digital aesthetic"],
"styles": ["modern tech elements", "futuristic design"],
"negative": "organic, rustic, natural"
},
"Nature": {
"prompts": ["natural elements", "organic design"],
"styles": ["flowing shapes", "natural textures"],
"negative": "artificial, geometric"
},
"Urbain": {
"prompts": ["urban style", "city aesthetic"],
"styles": ["street art influence", "urban textures"],
"negative": "rural, natural"
}
}
def generate_image(format_size, orientation, subject, style, text_effect, collection, title, subtitle, quality, creativity):
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_TOKEN')}"}
try:
# Dimensions optimisées
width, height = (768, 1024) if format_size == "A4" else (1024, 1024)
if orientation == "Paysage":
width, height = height, width
# Construction du prompt optimisée
style_config = ART_STYLES[style]
text_config = TEXT_EFFECTS[text_effect]
prompt = f"{style_config['prompt_prefix']}, {subject}"
# Ajout des éléments de style et texte de manière plus stable
if text_effect != "Standard":
prompt += f", {text_config['prompt_suffix']}"
if collection and collection in THEME_COLLECTIONS:
coll = THEME_COLLECTIONS[collection]
prompt += f", {', '.join(coll['prompts'][:1])}" # Limite à un prompt pour stabilité
if title:
prompt += f", with text '{title}'"
# Configuration optimisée
payload = {
"inputs": prompt,
"parameters": {
"negative_prompt": style_config['negative_prompt'],
"num_inference_steps": min(style_config['steps'], 50), # Limite pour stabilité
"guidance_scale": min(style_config['guidance'] * (creativity/10), 10.0), # Limite max
"width": width,
"height": height
}
}
print(f"Prompt: {prompt}") # Debug
print(f"Paramètres: {payload}") # Debug
response = requests.post(API_URL, headers=headers, json=payload, timeout=30)
if response.status_code == 200:
image = Image.open(io.BytesIO(response.content))
return image, "✨ Création réussie!"
else:
print(f"Erreur API: {response.text}") # Debug
return None, f"⚠️ Erreur {response.status_code}: Essayez de modifier les paramètres"
except Exception as e:
print(f"Exception: {str(e)}") # Debug
return None, f"⚠️ Erreur: {str(e)}"
# Effets de texte
TEXT_EFFECTS = {
"Standard": {
"prompt_suffix": "with clear readable text",
"text_params": {"weight": 1.0}
},
"Néon": {
"prompt_suffix": "with glowing neon text effect",
"text_params": {"weight": 1.2}
},
"3D": {
"prompt_suffix": "with 3D text effect, depth and shadows",
"text_params": {"weight": 1.3}
},
"Métallique": {
"prompt_suffix": "with metallic text effect, reflective surface",
"text_params": {"weight": 1.1}
},
"Graffiti": {
"prompt_suffix": "with graffiti style text, urban art typography",
"text_params": {"weight": 1.2}
}
}
# Collections thématiques
THEME_COLLECTIONS = {
"Nature": {
"prompts": ["natural elements", "organic composition"],
"styles": ["flowing lines", "natural textures"],
"negative": "artificial, synthetic"
},
"Urbain": {
"prompts": ["urban landscape", "city elements"],
"styles": ["street art", "architectural elements"],
"negative": "rural, natural"
},
"Tech": {
"prompts": ["technological elements", "digital aesthetic"],
"styles": ["circuit patterns", "tech elements"],
"negative": "organic, traditional"
}
}
# CSS personnalisé
CUSTOM_CSS = """
.container { max-width: 1200px; margin: auto; }
.welcome { text-align: center; margin: 20px 0; padding: 20px; background: #1e293b; border-radius: 10px; }
.quality-controls { margin: 10px 0; padding: 10px; background: #2d3748; border-radius: 5px; }
.style-group { background: #2d3748; padding: 15px; border-radius: 5px; margin: 10px 0; }
.text-effects { background: #374151; padding: 12px; border-radius: 5px; margin: 8px 0; }
.preview-panel { position: relative; }
.parameters { display: flex; gap: 10px; }
"""
def enhance_prompt(subject, style, text_effect, collection=None, additional_details=""):
"""Génération de prompt optimisée"""
style_config = ART_STYLES[style]
text_config = TEXT_EFFECTS[text_effect]
base_prompt = f"{style_config['prompt_prefix']}, {subject}"
if text_effect != "Standard":
base_prompt += f", {text_config['prompt_suffix']}"
if collection and collection in THEME_COLLECTIONS:
collection_data = THEME_COLLECTIONS[collection]
collection_elements = collection_data["prompts"] + collection_data["styles"]
base_prompt += f", {', '.join(collection_elements)}"
if additional_details:
base_prompt += f", {additional_details}"
negative_prompt = style_config['negative_prompt']
if collection:
negative_prompt += f", {THEME_COLLECTIONS[collection]['negative']}"
return base_prompt, negative_prompt
def generate_image(format_size, orientation, subject, style, text_effect, collection,
title, subtitle, quality, creativity, additional_details=""):
"""Fonction de génération d'image"""
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_TOKEN')}"}
try:
base_width = 1024
base_height = 1024
if orientation == "Portrait":
if format_size in ["A4", "A3"]:
base_width = 768
base_height = 1024
else:
if format_size in ["A4", "A3"]:
base_width = 1024
base_height = 768
enhanced_prompt, negative_prompt = enhance_prompt(
subject, style, text_effect, collection, additional_details
)
if title:
enhanced_prompt += f", with text: '{title}'"
if subtitle:
enhanced_prompt += f", subtitle: '{subtitle}'"
print(f"Prompt: {enhanced_prompt}") # Debug
payload = {
"inputs": enhanced_prompt,
"parameters": {
"negative_prompt": negative_prompt,
"num_inference_steps": int(ART_STYLES[style]['steps'] * (quality/100)),
"guidance_scale": ART_STYLES[style]['guidance'] * (creativity/10),
"width": base_width,
"height": base_height
}
}
response = requests.post(API_URL, headers=headers, json=payload, timeout=60)
if response.status_code == 200:
image = Image.open(io.BytesIO(response.content))
return image, f"✨ Création {style} avec effet {text_effect} réussie!"
else:
print(f"Erreur API: {response.text}")
return None, f"⚠️ Erreur {response.status_code}: Ajustez les paramètres"
except Exception as e:
print(f"Exception: {str(e)}")
return None, f"⚠️ Erreur: {str(e)}"
def create_interface():
with gr.Blocks(css=CUSTOM_CSS) as app:
gr.HTML("""
<div class="welcome">
<h1>🤖 Equity Artisan 3.0</h1>
<p>Créez des affiches artistiques professionnelles avec notre assistant créatif augmenté.</p>
</div>
""")
with gr.Column(elem_classes="container"):
# Format
with gr.Group(elem_classes="style-group"):
gr.Markdown("### 📏 Format et Orientation")
with gr.Row():
format_choice = gr.Dropdown(
choices=["A4", "A3", "A2", "A1", "A0"],
value="A4",
label="Format"
)
orientation = gr.Radio(
choices=["Portrait", "Paysage"],
value="Portrait",
label="Orientation"
)
# Style et Contenu
with gr.Group(elem_classes="style-group"):
gr.Markdown("### 🎨 Style et Création")
with gr.Row():
with gr.Column(scale=1):
style = gr.Dropdown(
choices=list(ART_STYLES.keys()),
value="Neo Vintage",
label="Style artistique"
)
text_effect = gr.Dropdown(
choices=list(TEXT_EFFECTS.keys()),
value="Standard",
label="Effet de texte"
)
collection = gr.Dropdown(
choices=list(THEME_COLLECTIONS.keys()),
label="Collection (optionnel)"
)
with gr.Column(scale=2):
subject = gr.Textbox(
label="Sujet principal",
placeholder="Ex: loup, paysage urbain..."
)
additional_details = gr.Textbox(
lines=2,
label="Détails additionnels",
placeholder="Ajoutez des détails..."
)
# Texte
with gr.Group(elem_classes="text-effects"):
gr.Markdown("### ✍️ Texte")
with gr.Row():
title = gr.Textbox(
label="Titre principal",
placeholder="Texte principal..."
)
subtitle = gr.Textbox(
label="Sous-titre",
placeholder="Texte secondaire..."
)
# Paramètres
with gr.Group(elem_classes="quality-controls"):
with gr.Row():
quality = gr.Slider(
minimum=30,
maximum=50,
value=35,
step=5,
label="Qualité"
)
creativity = gr.Slider(
minimum=5,
maximum=15,
value=7.5,
step=0.5,
label="Créativité"
)
with gr.Row():
generate_btn = gr.Button("✨ Générer", variant="primary")
clear_btn = gr.Button("🗑️ Effacer", variant="secondary")
image_output = gr.Image(label="Aperçu", type="pil")
status = gr.Textbox(label="Statut", interactive=False)
# Events
generate_btn.click(
generate_image,
inputs=[
format_choice,
orientation,
subject,
style,
text_effect,
collection,
title,
subtitle,
quality,
creativity,
additional_details
],
outputs=[image_output, status]
)
clear_btn.click(
lambda: (None, "Image effacée"),
outputs=[image_output, status]
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch() |