File size: 9,570 Bytes
c290e43 89f7e0d f29baad 76ec96d 89f7e0d 3adc659 89f7e0d 76ec96d 89f7e0d 76ec96d 89f7e0d 38edf4a 89f7e0d c45b5a3 89f7e0d 38edf4a 89f7e0d 3adc659 89f7e0d 38edf4a 89f7e0d 76ec96d 89f7e0d 76ec96d 89f7e0d c45b5a3 89f7e0d f29baad 89f7e0d 2e9811d 89f7e0d 76ec96d 89f7e0d c45b5a3 89f7e0d c45b5a3 89f7e0d 76ec96d 89f7e0d 76ec96d 89f7e0d 76ec96d 89f7e0d c290e43 89f7e0d c290e43 89f7e0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
import gc
import os
from PIL import Image
import numpy as np
from dataclasses import dataclass
from typing import Optional, Dict, Any
import json
import time
@dataclass
class GenerationParams:
prompt: str
style: str = "realistic"
steps: int = 20
guidance_scale: float = 7.0
seed: int = -1
quality: str = "balanced"
class GenerartSystem:
def __init__(self):
self.model = None
self.styles = {
"realistic": {
"prompt_prefix": "professional photography, highly detailed, photorealistic quality",
"negative_prompt": "cartoon, anime, illustration, painting, drawing, blurry, low quality",
"params": {"guidance_scale": 7.5, "steps": 20}
},
"artistic": {
"prompt_prefix": "artistic painting, impressionist style, vibrant colors",
"negative_prompt": "photorealistic, digital art, 3d render, low quality",
"params": {"guidance_scale": 6.5, "steps": 25}
},
"modern": {
"prompt_prefix": "modern art, contemporary style, abstract qualities",
"negative_prompt": "traditional, classic, photorealistic, low quality",
"params": {"guidance_scale": 8.0, "steps": 15}
}
}
self.quality_presets = {
"speed": {"steps_multiplier": 0.8},
"balanced": {"steps_multiplier": 1.0},
"quality": {"steps_multiplier": 1.2}
}
self.performance_stats = {
"total_generations": 0,
"average_time": 0,
"success_rate": 100,
"last_error": None
}
def initialize_model(self):
"""Initialize the model with memory optimizations"""
if self.model is not None:
return
# Memory cleanup before model load
gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
try:
self.model = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float32,
safety_checker=None,
requires_safety_checker=False
)
# Memory optimizations
self.model.enable_attention_slicing()
self.model.enable_vae_slicing()
# Move to CPU - system doesn't have adequate GPU
self.model = self.model.to("cpu")
except Exception as e:
print(f"Error initializing model: {str(e)}")
raise
def cleanup(self):
"""Memory cleanup after generation"""
gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
def update_performance_stats(self, generation_time: float, success: bool = True, error: Optional[str] = None):
"""Update system performance statistics"""
self.performance_stats["total_generations"] += 1
# Update average time
prev_avg = self.performance_stats["average_time"]
self.performance_stats["average_time"] = (prev_avg * (self.performance_stats["total_generations"] - 1) +
generation_time) / self.performance_stats["total_generations"]
# Update success rate
if not success:
self.performance_stats["success_rate"] = (self.performance_stats["success_rate"] *
(self.performance_stats["total_generations"] - 1) +
0) / self.performance_stats["total_generations"]
self.performance_stats["last_error"] = error
def get_system_stats(self):
"""Get current system statistics"""
return {
"total_generations": self.performance_stats["total_generations"],
"average_time": round(self.performance_stats["average_time"], 2),
"success_rate": round(self.performance_stats["success_rate"], 1),
"memory_usage": f"{torch.cuda.memory_allocated()/1024**2:.1f}MB" if torch.cuda.is_available()
else "CPU Mode"
}
def generate_image(self, params: GenerationParams) -> Image.Image:
"""Generate image with given parameters"""
try:
# Initialize model if needed
if self.model is None:
self.initialize_model()
# Prepare generation parameters
style_config = self.styles[params.style]
quality_config = self.quality_presets[params.quality]
# Construct final prompt
full_prompt = f"{style_config['prompt_prefix']}, {params.prompt}"
# Calculate final steps
final_steps = int(min(25, params.steps * quality_config["steps_multiplier"]))
# Set random seed if needed
if params.seed == -1:
generator = None
else:
generator = torch.manual_seed(params.seed)
start_time = time.time()
# Generate image
with torch.no_grad():
image = self.model(
prompt=full_prompt,
negative_prompt=style_config["negative_prompt"],
num_inference_steps=final_steps,
guidance_scale=params.guidance_scale,
generator=generator,
width=512,
height=512
).images[0]
generation_time = time.time() - start_time
self.update_performance_stats(generation_time, success=True)
return image
except Exception as e:
self.update_performance_stats(0, success=False, error=str(e))
raise RuntimeError(f"Generation error: {str(e)}")
finally:
self.cleanup()
class GenerartInterface:
def __init__(self):
self.system = GenerartSystem()
def create_interface(self):
"""Create the Gradio interface"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# Header
gr.Markdown("# 🎨 Generart Beta")
with gr.Row():
# Left column - Controls
with gr.Column(scale=1):
prompt = gr.Textbox(label="Description", placeholder="Décrivez l'image souhaitée...")
style = gr.Dropdown(
choices=list(self.system.styles.keys()),
value="realistic",
label="Style Artistique"
)
with gr.Group():
steps = gr.Slider(
minimum=15,
maximum=25,
value=20,
step=1,
label="Nombre d'étapes"
)
guidance = gr.Slider(
minimum=6.0,
maximum=8.0,
value=7.0,
step=0.1,
label="Guide Scale"
)
quality = gr.Dropdown(
choices=list(self.system.quality_presets.keys()),
value="balanced",
label="Qualité"
)
seed = gr.Number(
value=-1,
label="Seed (-1 pour aléatoire)",
precision=0
)
generate_btn = gr.Button("Générer", variant="primary")
# System Stats
with gr.Group():
gr.Markdown("### 📊 Statistiques Système")
stats_output = gr.JSON(value=self.system.get_system_stats())
# Right column - Output
with gr.Column(scale=1):
image_output = gr.Image(label="Image Générée", type="pil")
# Generation Event
def generate(prompt, style, steps, guidance_scale, quality, seed):
params = GenerationParams(
prompt=prompt,
style=style,
steps=steps,
guidance_scale=guidance_scale,
quality=quality,
seed=seed
)
image = self.system.generate_image(params)
return [image, self.system.get_system_stats()]
generate_btn.click(
fn=generate,
inputs=[prompt, style, steps, guidance, quality, seed],
outputs=[image_output, stats_output]
)
return demo
# Create and launch the interface
if __name__ == "__main__":
interface = GenerartInterface()
demo = interface.create_interface()
demo.launch() |